The Surface Tension of Ionic Liquids

Part of the NATO ASI Series book series (NSSB, volume 174)


Ionic liquids usually form electric double layers, i. e., a local separation between the negative and positive charges, in regions of spatial non-uniformity occuring close to electrodes or to interfaces. The presence of an interfacial electric double layer, at say, the liquid-vapour interface of a molten salt, will modify the expression of the surface tension of that interface. The corresponding modification of the surface tension cannot beobtained from the standard expressions for ordinary liquids, as encountered in textbooks(1, since the latter inmediately lead to divergencies in the presence of the long-ranged Coulomb forces set up by this double layer.


Surface Tension Ionic Liquid Pair Density Electric Charge Density Direct Correlation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. S. Rowlinson and B. Widom, “Molecular Theory of Capilarity”, Clarendon, Oxford (1982).Google Scholar
  2. 2.
    J. G. Kirkwood and F. P. Buff, J. Chem. Phys., 17, 338 (1949)ADSCrossRefGoogle Scholar
  3. 3.
    J. Yvon in Proc. IUPAC Symposium on Thermodynamics (Brussels 1948).Google Scholar
  4. 4.
    D. G. Triezenberg and R. Zwanzig, Pbys. Rev. Lett., 28, 1183 (1972)ADSCrossRefGoogle Scholar
  5. 5.
    Schofield and J. R. Henderson, Proc. R. Soc. Lond. A379, 231 (1982)ADSGoogle Scholar
  6. 6.
    R. Evans and T. J. Sluckin, Molec. Phys., 40, 413 (1980).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    G. Senatore and M. P. Tosi, Nuovo Cim., 56B, 109 (1980).MathSciNetGoogle Scholar
  8. 8.
    M. Baus and C. F. Tejero, Molec. Phys., 47, 1211 (1982).ADSCrossRefGoogle Scholar
  9. 9.
    F. P. Buff, J. Chem. Phys., 23, 419 (1955).CrossRefGoogle Scholar
  10. 10.
    R. Evans, Adv. Phys., 28, 143 (1979).ADSCrossRefGoogle Scholar
  11. 11.
    J.H. Irving and J. G. Kirkwood, J. Chem. Phys., 18, 817 (1950).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    J. Frenkel, p. 362 in “Kinetic Theory of Liquids ”, Dover, New York (1946)zbMATHGoogle Scholar
  13. 13.
    M. Baus, Molec. Phys., 51, 211 (1984).ADSCrossRefGoogle Scholar
  14. 14.
    M. H. Waldor and D. E. Wolf, J. Chem. Phys. (submitted June 1986).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • M. Baus
    • 1
  1. 1.Chimie-Physique II, C. P. 231Université Libre de BruxellesBrusselsBelgium

Personalised recommendations