Advertisement

Convective and Interfacial Instabilities During Solidification

  • S. R. Coriell
  • G. B. McFadden
  • R. F. Sekerka
Part of the NATO ASI Series book series (NSSB, volume 174)

Abstract

During solidification and crystal growth from the melt, the crystal-melt interface is subject to morphological instability [1,2,3,4,5,6,7,8]. Under conditions for which unstable interfaces occur, the interface morphology is sometimes cellular, but dendritic (tree-like) growth usually occurs when the degree of instability is large. The solute distribution in the crystal influences the properties of the crystal, and since solid state diffusion is usually very slow, this solute distribution is determined primarily by the solute distribution in the melt at the crystal-melt interface. Thus, the interface morphology and fluid flow in the melt play a central role in determining the properties of the solidified material.

Keywords

Directional Solidification Linear Stability Analysis Convective Instability Solute Distribution Interface Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. W. Mullins, and R. F. Sekerka, Stability of a Planar Interface during Solidification of a Dilute Binary Alloy, J. Appl. Phys., 34:323 (1964).ADSCrossRefGoogle Scholar
  2. [2]
    R. F. Sekerka, Morphological Stability, in: Crystal Growth: An Introduction, P. Hartman, ed., North-Holland, Amsterdam (1973).Google Scholar
  3. [3]
    R. T. Delves, Theory of Interface Stability, in: Crystal Growth, B. R. Pamplin, ed., Pergamon, Oxford (1974).Google Scholar
  4. [4]
    D. J. Wollkind, A Deterministic Continuum Mechanical Approach to Morphological Stability of the Solid-Liquid Interface, in: Preparation and Properties of Solid State Materials, W. R. Wilcox, ed., Vol. 4, Marcel Dekker, New York (1979).Google Scholar
  5. [5]
    J. S. Langer, Instabilities and Pattern Formation in Crystal Growth, Rev. Mod. Phys. 52:1 (1980).ADSCrossRefGoogle Scholar
  6. [6]
    S. R. Coriell and R. F. Sekerka, Effect of Convective Flow on Morphological Stability, PhysicoChem. Hydrodyn. 2:281 (1981).Google Scholar
  7. [7]
    S. R. Coriell, G. B. McFadden, and R. F. Sekerka, Cellular Growth during Directional Solidification, Ann. Rev. Mater. Sci. 15:119 (1985).ADSCrossRefGoogle Scholar
  8. [8]
    M. E. Glicksman, S. R. Coriell, and G. B. McFadden, Interaction of Flows with the Crystal-Melt Interface, Ann. Rev. Fluid Mech. 18:307 (1986).ADSCrossRefGoogle Scholar
  9. [9]
    C. J. Chang and R. A. Brown, Radial Segregation Induced by Natural Convection and Melt/Solid Interface Shape in Vertical Bridgman Growth, J. Crystal Growth, 63:343 (1983).ADSCrossRefGoogle Scholar
  10. [10]
    J. S. Turner,Buoyancy Effects in Fluids, Cambridge University Press, Cambridge, (1973).MATHGoogle Scholar
  11. [11]
    W. J. Boettinger, S. R. Coriell, and R. F. Sekerka, Mechanisms of Microsegregation-free Solidification, Mat. Sci. Eng. 65:27 (1984).CrossRefGoogle Scholar
  12. [12]
    R. L. Parker, Crystal Growth Mechanisms: Energetics, Kinetics, and Transport, Solid State Phys. 25:151 (1970).CrossRefGoogle Scholar
  13. [13]
    B. Caroli, C. Caroli, and B. Roulet, Non-Equilibrium Thermodynamics of the Solidification Problem, J. Crystal Growth 66:575 (1984).ADSCrossRefGoogle Scholar
  14. [14]
    R. F. Sekerka, A Stability Function for Explicit Evaluation of the Mullins-Sekerka Interface Stability Function, J. Appl. Phys. 36:264 (1965).ADSCrossRefGoogle Scholar
  15. [15]
    R. Sriranganathan, D. J. Wollkind, and D. B. Oulton, A Theoretical Investigation of the Development of Interfacial Cells during the Solidification of a Dilute Binary Alloy: Comparison with the Experiments of Morris and Winegard, J. Crystal Growth 62:265 (1983).ADSCrossRefGoogle Scholar
  16. [16]
    L. H. Ungar and R. A. Brown, Cellular Interface Morphologies in Directional Solidification. The One-Sided Model, Phys. Rev. B29:1367 (1984).ADSGoogle Scholar
  17. [17]
    G. B. McFadden and S. R. Coriell, Nonplanar Interface Morphologies during Unidirectional Solidification of a Binary Alloy, Physica 12D: 253 (1984).ADSGoogle Scholar
  18. [18]
    L. H. Ungar and R. A. Brown, Cellular Interface Morphologies in Directional Solidification. II. The Effect of Grain Boundaries, Phys. Rev. B30:3993 (1984).ADSGoogle Scholar
  19. [19]
    L. H. Ungar, M. J. Bennett, and R. A. Brown, Cellular Interface Morphologies in Directional Solidification. III. The Effects of Heat Transfer and Solid Diffusivity, Phys. Rev. B31:5923 (1985).ADSGoogle Scholar
  20. [20]
    G. B. McFadden, R. F. Boisvert, and S. R. Coriell, unpublished researchGoogle Scholar
  21. [21]
    S. R. Coriell, M. R. Cordes, W. J. Boettinger, and R. F. Sekerka, Convective and Interfacial Instabilities during Unidirectional Solidification of a Binary Alloy, J. Crystal Growth, 49:13 (1980).ADSCrossRefGoogle Scholar
  22. [22]
    S. R. Coriell, M. R. Cordes, W. J. Boettinger, and R. F. Sekerka, Effect of Gravity on Coupled Convective and Interfacial Instabilities during Directional Solidification, Adv. Space Res. 1:5 (1981).ADSCrossRefGoogle Scholar
  23. [23]
    D. T. J. Hurle, E. Jakeman, and A. A. Wheeler, Effect of Solutal Convection on the Morphological Stability of a Binary Alloy, J. Crystal Growth, 58:163 (1982).ADSCrossRefGoogle Scholar
  24. [24]
    D. T. J. Hurle, E. Jakeman, and A. A. Wheeler, Hydrodynamic Stability of the Melt during Solidification of a Binary Alloy, Phys. Fluids, 26:624 (1983).MathSciNetADSMATHCrossRefGoogle Scholar
  25. [25]
    R. J. Schaefer and S. R. Coriell, Convection-Induced Distortion of a Solid-Liquid Interface, Metall. Trans. 15A:2109 (1984).Google Scholar
  26. [26]
    B. Caroli, C. Caroli, C. Misbah, and B. Roulet, Solutal Convection and Morphological Instability in Directional Solidification of Binary Alloys, J. Phys. (Paris) 46:401 (1985).Google Scholar
  27. [27]
    S. R. Coriell, G. B. McFadden, R. F. Boisvert, and R. F. Sekerka, Effect of a Forced Couette Flow on Coupled Convective and Morphological Instabilities during Unidirectional Solidification, J. Crystal Growth, 69:15 (1984).ADSCrossRefGoogle Scholar
  28. [28]
    G. W. Young and S. H. Davis, Directional Solidification with Buoyancy in Systems with Small Segregation Coefficient, Technical Report No.8513, Northwestern University, Jan. 1986.Google Scholar
  29. [29]
    D. R. Jenkins Nonlinear Analysis of Convective and Morphological Instability during Solidification of a Dilute Binary Alloy, PhysicoChem. Hydrodyn. 6:521 (1985).Google Scholar
  30. [30]
    S. R. Coriell, G. B. McFadden, R. F. Boisvert, M. E. Glicksman, and Q. T. Fang, Coupled Convective Instabilities at Crystal-Melt Interfaces, J. Crystal Growth 66:514 (1984).ADSCrossRefGoogle Scholar
  31. [31]
    G. B. McFadden, S. R. Coriell, R. F. Boisvert, M. E. Glicksman, and Q. T. Fang, Morphological Stability in the Presence of Fluid Flow in the Melt, Metall. Trans. 15A:2117 (1984).CrossRefGoogle Scholar
  32. [32]
    Q. T. Fang, M. E. Glicksman, S. R. Coriell, G. B. McFadden, and R. F. Boisvert, Convective influence on the Stability of a Cylindrical Solid-Liquid Interface, J. Fluid Mech. 151:121 (1985).ADSCrossRefGoogle Scholar
  33. G. B. McFadden, R. G. Rehm, S. R. Coriell, W. Chuck, and K. A. Morrish, Thermosolutal Convection during Directional Solidification, Metall. Trans. 15A:2125 (1984).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • S. R. Coriell
    • 1
  • G. B. McFadden
    • 1
  • R. F. Sekerka
    • 2
  1. 1.National Bureau of StandardsGaithersburgUSA
  2. 2.Departments of Physics and MathematicsCarnegie-Mellon UniversityPittsburghUSA

Personalised recommendations