Advertisement

Interfacial Effects on the Onset of Convection in Horizontal Liquid Layers

  • Gabbita Sundara Rama Sarma
Part of the NATO ASI Series book series (NSSB, volume 174)

Abstract

Horizontal liquid layers are prone to convective instability when subjected to appropriate vertical gradients of temperature and/ or concentration. Whenever fluid-fluid interfaces are present the two potentially destabilizing mechanisms inducing convective instability in the configuration are buoyancy and surface tension. The onset of convection in the configuration depends also on the boundary conditions imposed, i.e., on the physical properties of the adjoining media, more so, if one of the driving mechanisms is itself of interfacial origin. The two destabilizing mechanisms in the configuration in general reinforce each other, i.e., the adverse (temperature/concentration) gradient necessary to induce instability when both the mechanisms are present is smaller than that required when only one of them is involved. This well known result due to Nield1, however, turns out to be critically dependent on the detailed characterization of the two-fluid interface and the associated boundary conditions.

Keywords

Solidification Front Convective Instability Critical Wave Number Neutral Stability Curve Neutral Curf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. A. Nield, Surface tension and buoyancy effects in cellular convection, J F M, 19:341 (1964).MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    L. E. Scriven and C. V. Sternling, On cellular convection driven by surface-tension gradients: Effects of mean surface tension and surface viscosity,J F M, 19:321 (1964).MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    K. A. Smith, On convective instability induced by surface-tension gradients, J F M, 24:401 (1966).CrossRefGoogle Scholar
  4. 4.
    G. S. R. Sarma, Effects of interfacial curvature and gravity waves on the onset of thermocapillary convective instability in a rotating liquid layer subjected to a transverse magnetic field, P C H, 6:283 (1985).Google Scholar
  5. 5.
    G. S. R. Sarma, Interaction of the surface tension and buoyancy mechanisms in a horizontal liquid layer, Paper No. AIAA-85–0986, presented at the AIAA 20th Thermophysics Conference, June 19–21,1985, Williamsburg, Va.Google Scholar
  6. 6.
    S. Chandrasekhar, “Hydrodynamic and Hydromagnetic Stability,” Oxford University Press, London, (1961).MATHGoogle Scholar
  7. 7.
    R. Jansen and P. R. Sahm, Solidification under microgravity, Hater. Sci. Engg., 65:199, (1984)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Malmejac et al, “Challenges and Perspectives of Microgravity Research in Space,” ESA BR-05, European Space Agency, Paris, (1981).Google Scholar
  9. 9.
    S. H. Davis, U. Müller, and C. Dietsche, Pattern selection in single-component systems coupling Benard convection and solidification, J F M, 144:133 (1984).CrossRefGoogle Scholar
  10. 10.
    F. H. Busse, Non-linear properties of thermal convection, Rep. Prog. Phys., 41:1929 (1978).ADSCrossRefGoogle Scholar
  11. 11.
    E. L. Koschmieder, Bénard convection, Adv. Chem. Phys., 26:177 (1974).CrossRefGoogle Scholar
  12. 12.
    C. Normand, Y. Pomeau, and M. G. Velarde, Convective instability: A physicist’s approach,Rev. Mod. Phys., 49:581 (1977).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    J. Zierep and H. Oertel jr.(Editors), “Convective Transport and Instability Phenomena,” Verlag G. Braun, Karlruhe (1982).Google Scholar
  14. 14.
    S. Ostrach, Low-gravity fluid flows, Ann. Rev. Fluid Mech., 14:313, Annnual Reviews Inc., Palo Alto, California, (1982).Google Scholar
  15. 15.
    G. S. R. Sarma, On oscillatory modes of thermocapillary instability in a liquid layer rotating about a transverse axis, P C H, 2:143, (1981).Google Scholar
  16. 16.
    S. H. Davis and G. M. Homsy, Energy stability theory for free-surface problems: buoyancy-thermocapillary layers, J F M, 98:527, (1980).MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    J. L. Castillo and M. G. Velarde, Buoyancy-thermocapillary instability: the role of interfacial deformation in one- and two- component fluid layers heated from below or above,J F H, 125:463 (1982).MATHGoogle Scholar
  18. 18.
    P. G. Grodzka and T. C. Bannister, Heat flow and convection experiments aboard Apollo 17,Science, 187:165, (1975).ADSCrossRefGoogle Scholar
  19. 19.
    J. Pantaloni, R. Bailleux, J. Salan, and M. G. Velarde, Rayleigh-Bénard-Marangoni instability: New experimental results, J. Non-Equilib. Thermodyn., 4:201 (1979).ADSCrossRefGoogle Scholar
  20. 20.
    P. Cerisier, C. Peres-Garcia, R. Occeli, and J. Pantaloni, Cellular structures in Bénard-Marangoni instability,P C H, 6:653 (1985).Google Scholar
  21. 21.
    C. Perez-Garcia et al, Linear analysis of surface deflection in Bénard-Marangoni instability, J. Phys., 46:2047 (1985).CrossRefGoogle Scholar
  22. 22.
    C. Dietsche, Einfluß der Bénard-Konvektion auf Gefrierflachen, Research Report KfK 3724, Kernforschungszentrum Karlsruhe, accepted as Doctoral Thesis by the University of Karlsruhe (1984).Google Scholar
  23. 23.
    D. T. J. Hurle, On similarities between the theories of morphological instability of a growing binary alloy crystal and Rayleigh-Bénard convective instability,J C G, 72:738 (1985).CrossRefGoogle Scholar
  24. 24.
    F. H. Busse, The stability of finite amplitude cellular convection and its relation to an extremum principle, J F M, 30:625, (1967).MATHCrossRefGoogle Scholar
  25. 25.
    S. H. Davis and L. A. Segel, Effects of surface curvature and property variation on cellular convection, Phys. Fluids, 11:470 (1968).ADSMATHCrossRefGoogle Scholar
  26. 26.
    F. H. Busse and N. Riahi, Nonlinear convection in a layer with nearly insulating boundaries, J F M, 96:243 (1980).MATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Gabbita Sundara Rama Sarma
    • 1
  1. 1.Institute for Theoretical Fluid MechanicsGerman Aerospace Research Establishment (DFVLR)Germany

Personalised recommendations