Abstract

Pesticides may be defined as chemical substances intended for preventing, destroying, repelling or mitigating the effects of pests. In general, substances used as plant growth regulators and defoliants are also included in this term. In 1980, some 530 000 tons (4.8 × 105 t) of pesticides were used in the production of food as well as clothing and other industrial goods in the United States for the more than 270 million inhabitants. That means an annual input of 2 kg of pesticides per person into our environment. Pesticides are an integral part of world agriculture and under present conditions are considered to be indispensable. Plants that supply our main source of food are susceptible to 80 000 to 100 000 diseases caused by fungi, viruses, bacteria and other types of microorganisms. Some 3000 nematodes and 10 000 species of insects attack crop plants. They compete furthermore with 30 000 species of weed, of which about 1800 cause economic losses worldwide. In the developed countries, crop losses due to pests are about 30% despite the use of pesticides and other sophisticated control methods (Ware, 1983).

Keywords

Triazine Simazine Linuron Methomyl Pendimethalin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambrus, A., Visi, E., Zaker, F., Hargitai, E., Szabo, L. and Papa, A. (1981a). General method for determination of pesticides in samples of plant origin, soil, and water. III. Gas chromatographic analysis and confirmation, J. Assoc. Off. Anal. Chem., 64, 749–768.Google Scholar
  2. Ambrus, A., Lantos, J., Visi, E., Csatlós, I., Sávári, L. (1981b). General method of determination of pesticide residues in samples of plant origin, soil, and water. I. Extraction and cleanup, J. Assoc. Off. Anal. Chem., 64, 733–742.Google Scholar
  3. Aue, W. A., Hastings, C. R. and Kapila, S. (1973). On the unexpected behaviour of a common gas chromatographic phase, J. Chromatogr., 77, 299–307.CrossRefGoogle Scholar
  4. Ballschmiter, K., Buchert, H., Bihler, S. and Zell, M. (1981). Baseline studies of global pollution — IV. The pattern of pollution by organo-chlorine compounds in the North Atlantic as accumulated by fish, Fresenius Z. Anal. Chem., 306, 323–339.CrossRefGoogle Scholar
  5. Beck, H., Eckhart, K., Kellert, M., Mathar, W., Rühl, Ch.-S. and Wittkowski, R. (1987) Levels of PCDFs and PCDDs in samples of human origin and food in the Federal Republic of Germany, Chemosphere, 16, 1977–1982.CrossRefGoogle Scholar
  6. Bertsch, W. (1978). Methods in high resolution gas chromatography. Two-dimensional techniques. J. High. Resolut. Chromatogr. Chromatogr. Commun, 1, 85, 187, 289.Google Scholar
  7. Blum, W. (1988). Säulen für die Gaschromatographie, Nachr. Chem. Tech. Lab., 36,166–172.Google Scholar
  8. Brody, S. S. and Chaney, J. E. (1966). Flame photometric detector — the application of a specific detector for phosphorus and for sulfur compounds, sensitive to subnanogram quantities, J. Gas Chromatogr., 4, 42–46.Google Scholar
  9. Büchel, K. H. (1977). Pflanzenschutz and Schädlingsbekämfung, Georg Thieme, Stuttgart.Google Scholar
  10. Buser, H. R. (1976). High-resolution gas chromatography of polychlorinated dibenzo-p-dioxins and dibenzofurans, Anal. Chem., 4B, 1553–1557.CrossRefGoogle Scholar
  11. Buser, H. R. (1977). Determination of 2,3,7,8-tetrachlorodibenzo-p-dioxin in environmental samples by high-resolution gas chromatography and low resolution mass spectrometry, Anal. Chem., 49, 918–922.CrossRefGoogle Scholar
  12. Cairns, T., Siegmund, E. G. and Jacobson, R. A. (Ed.) (1987). Mass Spectral Data Compilation of Pesticides and Industrial Chemicals. Food and Drug Administration, Los Angeles, CA.Google Scholar
  13. Cochrane, W. P. (1975). Confirmation of insecticide and herbicide residues by chemical derivatization, J. Chromatogr. Sci., 13, 246–253.Google Scholar
  14. Damico, J. N. (1972). Pesticides. In Bichemical Applications of Mass Spectrometry, Waller, R. G. (ed)., Wiley, New York, p. 623.Google Scholar
  15. Dandeneau, R. and Zerenner, E. H. (1979). An investigation of glasses for capillary chromatography, J. High. Resolut. Chromatogr. Chromatogr. Commun., 2, 351–356.CrossRefGoogle Scholar
  16. Deans, D. R. (1968). A new technique for heart cutting in gas chromatography, Chromatographie, 1, 18–22.CrossRefGoogle Scholar
  17. De Faubert Maunder. M. J., Egan, H., Godly, E. W., Hammond, E. W., Roburn, J., Thomson, J. (1964). Clean-up of animal fats and dairy products for the analysis of chlorinated pesticide residues, Analyst, 89, 168–174.CrossRefGoogle Scholar
  18. Deleu, R. and Copin, A. (1980). Separation of pesticides by capillary gas chromatography, J. High Resolut. Chromatogr. Chromatogr. Commun., 3, 299–300.CrossRefGoogle Scholar
  19. Desty, D. H., Haresnape, J. N. and Whyman, B. H. F. (1960). Construction of long lengths of coiled glass capillary, Anal. Chem., 32, 302–304.CrossRefGoogle Scholar
  20. Devaux, P. and Guichon, G. (1970). Determination of the optimum operating conditions of the electron capture detector, J. Chromatogr. Sci.,8, 502–508.Google Scholar
  21. DFG-Method S16, see Thier and Zeumer (1987).Google Scholar
  22. DFG-Method S19, see Thier and Zeumer (1987).Google Scholar
  23. Eyem, J. (1975). The role of wall-coated capillary columns in GC-MS techniques, Chromatographia, 8, 456 162.Google Scholar
  24. FDA Pesticide Analytical Manual (1985). Food and Drug Administration, Washington, D.C., vol. 1.Google Scholar
  25. Freudenthal, J. and Gramberg, L. G. (1975). Catalogue of Mass Spectra of Pesticides, National Institute of Public Health, Bilthoven.Google Scholar
  26. Gilsbach, W. and Thier, H.-P. (1982). Beiträge zur Rückstandsanalyse von Chlorphenoxycarbonsäure-Herbiciden in Weizenmehl, Z. Lebensm.-Unters.Forsch., 175, 327–332.CrossRefGoogle Scholar
  27. Goebel, H. and Stan, H.-J. (1983). Automated gas chromatographic analysis of pesticide residues in food samples by means of fused-silica capillary columns and data processing, J. Chromatogr., 279, 523–532.CrossRefGoogle Scholar
  28. Grob, K. and Grob, G. (1969). Splitless injection on capillary columns, Part I, The basic technique, steroid analysis as an example, J. Chromatogr. Sci., 7, 584–586.Google Scholar
  29. Hall, R. C. and Harris, D. E. (1979). Direct gas chromatographic determination of carbamate pesticides using carbowax 20M-modified supports and the electrolytic conductivity detector, J. Chromatogr.,169, 245–259.CrossRefGoogle Scholar
  30. Hayes, W. J., Jr., (1981). Toxicology of Pesticides, Williams & Wilkins, Baltimore, MD.Google Scholar
  31. Henneberg, D. and Schomburg, G. (1964). Die kombinierte Anwendung von Gaschromatographie und Massenspektrometrie, Fresenius Z. Anal. Chem., 211,55–61.CrossRefGoogle Scholar
  32. Henneberg, D., Henrichs, U. and Schomburg, G. (1975). Open split connection of glass capillary columns to mass spectrometers, Chromatographia, 8, 449–462.CrossRefGoogle Scholar
  33. Hild, J., Schulte, E. and Thier, H.-P. (1978). Trennung von Organophosphor-Pestiziden und ihren Metaboliten auf Glaskapillarsäulen, Chromatographia, 11, 397–399.CrossRefGoogle Scholar
  34. Elites, R. A. (1985). CRC Handbook of Mass Spectra of Environmental Contaminants. CRC Press, Boca Raton, FL.Google Scholar
  35. Holland, P. T. and Greenhalgh, R. (1981). Selection of gas chromatographic detectors for pesticide residue analysis. In Analysis of Pesticide Residues. Chemical Analysis, Vol. 58. Moye, H. A. (Ed), John Wiley & Sons, New York, p. 51.Google Scholar
  36. In Ki, Mun, Bartholomew, D. R., Stauffer, D. B. and McLafferty, F. W. (1981). Weighted file ordering for fast matching of mass spectra against a comprehsive data base, Anal. Chem., 53, 1938–1939.CrossRefGoogle Scholar
  37. Karman, A. and Giuffrida, L. (1964). Enhancement of the response of the hydrogen flame ionization detector to compounds containing halogens and phosphorus, Nature, 201, 1204–1205.CrossRefGoogle Scholar
  38. Krause, R. T. (1980). Multiresidue method for determining N-methylcarbamate insecticides in crops, using high performance liquid chromatography, J. Assoc. Off. Anal. Chem., 63, 1114–1124.Google Scholar
  39. Krijgsman, W., and van de Kamp, C. G. (1976). Analysis of organophosphorus pesticides by capillary gas chromatography with flame photometric detection, J. Chromatogr., 117, 201–205.CrossRefGoogle Scholar
  40. Lee, M. L., Yang, F. J. and Bartle, K. D. (1984). Open Tubular Column Gas Chromatography, John Wiley & Sons, New York.Google Scholar
  41. Lipinski, J. and Stan H.-J. (1988). CAPA — Computer Aided Pesticide Analysis computer program for the automated evaluation of chromatographic data for residue analysis of foods. J. Chromatogr., 441, 213–225.CrossRefGoogle Scholar
  42. Lipinski, J. and Stan. H.-J. (1989) Compilation of retention data for 270 pesticides on 3 different capillary columns. Poster presented at the 10th International Symposium on Capillary Chromatography, Riva del Garda, Italy, May, 22–25, 1989.Google Scholar
  43. Lovelock, J. E. (1960). An ionization detector for permanent gases, Nature, 187, 49–50.CrossRefGoogle Scholar
  44. Lovelock, J. E. and Lipsky, S. R. (1961). Electron affinity spectroscopy — a new method for the identification of functional groups in chemical compounds separated by gas chromatography, J. Am. Chem. Soc., 82, 431–433.CrossRefGoogle Scholar
  45. Luke, M. A. and Masumoto, H. T. (1986). Pesticide residue analysis of foods. In, Analytical Methods for Pesticides and Plant Growth Regulators, G. Zweig and J. Sherma (eds.), Academic Press, Orlando, FL, vol. XV, P. 161.Google Scholar
  46. Luke, M. A., Froberg, J. E., Masumoto, H. T. (1975). Extraction and cleanup of organochlorine, organophosphate, organonitrogen, and hydrocarbon pesticides in produce for determination by gas-liquid chromatography, J. Assoc. Off. Anal. Chem., 58, 1020–1026.Google Scholar
  47. McLafferty, F. W., Hertel, R. H. and Villwock, R. D. (1974). Computer identification of mass spectra, VI. Probability based matching of mass spectra; rapid identification of specific compounds in mixtures, Org. Mass Spectrom., 9, 690–702.CrossRefGoogle Scholar
  48. Mills, P. A., Onley, J. H. and Geither, R. A. (1963). Rapid method for chlorinated pesticide residues in nonfatty foods, J. Assoc. Off. Anal. Chem. 46, 186–191.Google Scholar
  49. Moseman, R. (1978). Rapid procedure for preparation of support-bonded carbowax 20M gas chromatographic column packing, J. Chromatogr., 166, 397–402.CrossRefGoogle Scholar
  50. Moye, H. A. (ed.) (1981) Analysis of Pesticide Residues. Chemical Analysis, Vol. 58, John Wiley & Sons, New York.Google Scholar
  51. Müller, H.-M. and Stan. H.-J. (1989). Pesticide residue analysis in food with capillary gas chromatography. Poster presented at the 10th International Symposium on Capillary Chromatography in Riva del Garda, Italy, May, 22–25, 1989.Google Scholar
  52. Ouchi, G. I. (1987). Personal Computers for Scientists, American Chemical Society, Washington, D.C.Google Scholar
  53. Patterson, P. L. (1978a). Comparison of quenching effects in single-and dual-flame photometric detectors, Anal. Chem., 50, 345–348.CrossRefGoogle Scholar
  54. Patterson, P. L. (1978b). Selective responses of a flameless thermionic detector, J. Chromatogr., 167, 381–397.CrossRefGoogle Scholar
  55. Patterson, P. L. and Howe, R. L. (1978). Thermionic nitrogen-phosphorus detection with an alkali-ceramic bead, J. Chromatogr. Sci., 16, 275–280.Google Scholar
  56. Pellizzari, E. D. (1974). Electron capture detection in gas chromatography, J. Chromatogr., 98, 323–361.CrossRefGoogle Scholar
  57. Pensyna, G. M., Venkataraghaven, R., Dayringer, H. E. and McLafferty, F. W. (1976). Probability based matching system using a large collection of reference mass spectra. Anal. Chem., 48, 1362–1368.CrossRefGoogle Scholar
  58. Perkow, W. (1983/1988). Wirksubstanzen der Pflanzenschutz- und Schädlingsbekämpfungsmittel, Paul Parey, Berlin.Google Scholar
  59. Pflugmacher, J. and Ebing, W. (1973). Reinigung Pestizidrückstände enthaltender Rohextrakte mit einer automatisch arbeitenden Apparatur nach dem Prinzip der kombinierten Spül-und Codestillation (Sweep Co-Distillation), Fresenius Z. Anal. Chem., 263, 120–127.CrossRefGoogle Scholar
  60. Ripley, B. D. and Braun, H. E. (1983). Pesticide residues - retention time data for organochlorine, organophosphorus, and organonitrogen pesticides on SE-30 capillary column and application of capillary gas chromatography to pesticide residue analysis, J. Assoc. Off. Anal. Chem., 66, 1084–1095.Google Scholar
  61. Roseboom, H. and Herbold, H. A. (1980). Determination of triazine herbicides in various crops by capillary gas chromatography with thermionic detection, J. Chromatogr.,202, 431–438.CrossRefGoogle Scholar
  62. Ryhage, R. (1964). Use of a mass spectrometer as a detector and analyser for effluents emerging from high temperature gas liquid chromatography columns, Anal. Chem., 36, 759–764.CrossRefGoogle Scholar
  63. Safe, S. and Hutzinger, O. (1973). Mass Spectrometry of Pesticides and Pollutants, CRC Press, Cleveland.Google Scholar
  64. Schomburg, G., Husmann, H. and Weeke, F. (1975). Aspects of double-column gas chromatography with glass capillaries involving intermediate trapping, J. Chromatogr., 112, 205–217.CrossRefGoogle Scholar
  65. Schulte, E. and Acker, L. (1974a). Gas-chromatographie mit Glascapillaren bei Temperaturen bis zu 320°C und ihre Anwendung zur Trennung von Polychlorbiphenylen, Fresenius Z. Anal. Chem., 268, 260–267.CrossRefGoogle Scholar
  66. Schulte, E. and Acker, L. (1974b). Identifizierung und Metabolisierbarkeit von polychlorierten Biphenylen, Naturwissenschaften, 61, 79–80.CrossRefGoogle Scholar
  67. Schulte, E., Thier, H.-P. and Acker, L. (1976). Rückstandsanalytik polychlorierter Biphenyle in Lebensmitteln tierischer Herkunft: Erfahrungen und Vorschläge zur Vereinheitlichung, Dtsch. Lebensm. Rundsch., 72, 229–232.Google Scholar
  68. Singh, J. and Lapointe, M. R. (1974). Confirmation of six organothiophosphorus pesticides by chemical derivatization at nanogram levels, J. Assoc. Off. Anal. Chem., 57, 1285.Google Scholar
  69. Sissons, D. and Welti, D. (1971). Structural identification of polychlorinated biphenyls in commercial mixtures by gas-liquid chromatography, nuclear magnetic resonance and mass spectrometry, J. Chromatogr., 60, 15–32.CrossRefGoogle Scholar
  70. Specht, W. and Tillkes, M. (1980). Gaschromatographische Bestimmung von Rückständen an Pflanzenbehandlungsmitteln nach Clean-up über Gel-Chromatographie und Mini-Kiesegel-Säulen-Chromatographie, 3. Mitteilung, Fresenius Z. Anal. Chem., 301, 300–307.CrossRefGoogle Scholar
  71. Specht, W. and Tillkes, M. (1985). Gaschromatographische Bestimmung von Rückständen an Pflanzenbehandlungsmitteln nach Clean-up über Gel-Chromatographie und Mini-Kieselgel-Säulen-Chromatographie, 5. Mitteilung, Fresenius Z. Anal. Chem., 322, 443–445.CrossRefGoogle Scholar
  72. Stalling, D. L., Tindle, R. C. and Johnson, J. L. (1972). Cleanup of pesticide and polychlorinated biphenyl residues in fish extracts by gel permeation chromatography, J. Assoc. Off. Anal. Chem., 55, 32–38.Google Scholar
  73. Stan, H.-J. (1977a). Nachweis von Phosphorpestizidrückständen in Lebensmitteln durch Kapillargaschromatographie/Massenspektrometrie, Chromatographia, 10, 233–239.CrossRefGoogle Scholar
  74. Stan, H.-J. (1977b). Nachweis von Organophosphorsäureester-Rückständen in Lebensmitteln im ppb-Bereich durch Kapillargaschromatographie/Massenspektrometrie-Kopplung, Z. Lebensm.-Unters.-Forsch., 164, 153–159.CrossRefGoogle Scholar
  75. Stan, H.-J. (1981). Combined gas chromatography-mass spectromery. In Pesticide Analysis, Das, K. G. (ed.), Marcel Dekker, New York.Google Scholar
  76. Stan, H.-J. (1989). Application of computers for evaluation of gas chromatographic data. In Analytical Methods for Pesticides and Plant Growth Regulators, Vol. XVII, Sherma, J. (ed.), Academic Press, Orlando, Fl., p. 167–215.Google Scholar
  77. Stan, H.-J. (1988) Automatisierte Rückstandsanalyse von Pflanzenschutzmitteln mit Hilfe der zweidimensionalen Kapillargaschromatographie, Lebensmittelchem. Gerichtl. Chem.,42, 31–36.Google Scholar
  78. Stan, H.-J. and Abraham, B. (1978). All-glass open-split interface for gas chromatography–mass spectrometry, Anal. Chem., 50, 2161–2164.CrossRefGoogle Scholar
  79. Stan, H.-J., and Goebel, (1983a). Automated capillary gas chromatographic analysis of pesticide residue in food, J. Chromatogr., 268, 55–69.CrossRefGoogle Scholar
  80. Stan, H.-J. and Goebel, H. (1983b). Automated gas chromatographic analysis of pesticide residues in food samples by means of fused-silica capillary columns and data processing, J. Chromatogr., 279, 523–532.CrossRefGoogle Scholar
  81. Stan, H.-J. and Goebel, H. (1984a) Program in BASIC to combine DATA from two different selective detectors and its applications for screening of pesticides in residue analysis. J. Automatic Chemistry,6, 14–20.CrossRefGoogle Scholar
  82. Stan, H.-J. and Goebel, H. (1984b) Evaluation of automated splitless and manual on-columns injection techniques using capillary gas chromatography for pesticide residue analysis. J. Chromatogr., 314, 413–420.CrossRefGoogle Scholar
  83. Stan, H.-J. and Lipinski, J. (1985). Microcomputer programming in basic for the evaluation of capillary GC in the analysis of pesticides, J. Chromatogr.,349, 49–53.CrossRefGoogle Scholar
  84. Stan, H.-J. and Lipinski, J. (1987). BALANCE — a computer program for the handling and supervision of analytical standards, Intelligent Instruments & Computer, 5, 103–104.Google Scholar
  85. Stan, H.-J. and Lipinski, J. (1989). Mass spectral library for pesticides. Poster presented at the 10th International Symposium on Capillary Chromatography in Riva del Garda, Italy, May, 22–25.Google Scholar
  86. Stan, H.-J. and Mrowetz, D. (1983a). Residue analysis of pesticides in food by two-dimensional gas chromatography with capillary columns and parallel detection with flame photometric and electron-capture detection, J. Chromatogr., 279, 173–187.CrossRefGoogle Scholar
  87. Stan, H.-J. and Mrowetz, D. (1983b). Residue analysis of organophosphorus pesticides in food with two-dimensional gas chromatography using capillary columns and flame photometric detection, J. High. Resolut. Chromatogr. Chromatogr. Commun. 6, 255–263.CrossRefGoogle Scholar
  88. Stan, H.-J. and Müller, H.-M. (1988). Evaluation of automated and manual hotsplitless (PTV) and on-column injection technique using capillary gas chromatography for the analysis of organophosphorus pesticides. J. High Resolut. Chromatogr. Commun., 11, 140–143.CrossRefGoogle Scholar
  89. Stan, H.-J. and Steinbach, B. (1984). Automated development of optimum temperature programmes for gas chromatographic separation of complex mixtures on capillary columns, J. Chromatogr., 290, 311–319.CrossRefGoogle Scholar
  90. Stan H.-J. and Steinbach, B. (1985). BASIC program for development of optimum temperature programs for gas chromatographic separation, Intelligent Instruments & Computers,3, 3–13.Google Scholar
  91. Stan, H.-J., Abraham, B., Jung, J., Kellert, M. and Steinland, K. (1977). Nachweis von Organophosphorinsecticiden durch Gaschromatographie/Massenspektrometrie, Fresenius Z. Anal. Chem., 287, 271–285.CrossRefGoogle Scholar
  92. Storherr, R. W. and Watts, R. R. (1965). A sweep co-distillation cleanup method for organophosphate pesticide, J. Assoc. Off. Anal. Chem., 48, 1154–1160.Google Scholar
  93. Storherr, R. W. and Ott, P. and Watts, R. R. (1971) A sweep co-distillation cleanup method for organophosphate pesticides, I. recoveries from fortified crops. J. Assoc. Off. Anal. Chem., 54, 513–516.Google Scholar
  94. Suprock, J. F. and Vinopal, J. H. (1987). Behaviour of 78 pesticides and pesticide metabolites on four different ultra-bond gas chromatographic columns. J. Assoc. Off. Anal. Chem.,70, 1014–1017.Google Scholar
  95. The Pesticide Manual (1987). Worthing, Ch. R. (ed.), The British Crop Protection Council, Thornton Heath, UK.Google Scholar
  96. Thier, H.-P. and Frehse, H. (1986). Rückstandsanalytik von Pflanzenschutzmitteln, Georg Thieme, Stuttgart.Google Scholar
  97. Thier, H.-P. and Zeumer, H. (1987). (Ed.). Manual of Pesticide Residue Analysis. DFG, Dt. Forschungsgemeinschaft, Pesticides Comm., VCH, Weinheim.Google Scholar
  98. Thompson, J. F. and Watts, R. R. (1981). Gas-chromatographic columns in pesticide analysis. In Analysis of Pesticide Residues. Chemical Analysis, Vol. 58, Moye, H. A. (ed.), John Wiley & Sons, New York, p. 1–50.Google Scholar
  99. Thompson, J. F., Mann, J. B., Apodaca, A. O. and Kantor, E. (1975). Relative retention ratios of ninety-five pesticides and metabolites in nine gas—liquid chromatographic columns over a temperature range of 170 to 204°C in two detection modes, J. Assoc. Off. Anal. Chem., 58, 1037–1050.Google Scholar
  100. Thompson, J. F., Walker, A. C. and Moseman, R. F. (1969). Evaluation of eight gas chromatographic columns for chlorinated pesticides, J. Assoc. Off. Anal. Chem., 52, 1263–1277.Google Scholar
  101. Trindle, R. C. and Stalling, D. L. (1972). Apparatus for automated gel permeation, cleanup for pesticide residue analysis, Anal. Chem., 44, 1768–1773.CrossRefGoogle Scholar
  102. Ware, G. W. (1983). Pesticides: chemical tools. In Pesticides: Theory and Application, H. W. Freeman, New York, p. 3–25.Google Scholar
  103. Watson, J. T. and Biemann, K. (1964). High resolution mass spectra of compounds emerging from a gas chromatograph, Anal. Chem., 36, 1135–1137.CrossRefGoogle Scholar
  104. Wehner, T. A. and Seiber, J. N. (1981). Analysis of N-methylcarbamate insecticides and related compounds by capillary gas chromatography, J. High Resolut. Chromatogr. Chromatogr. Commun., 4, 348–350.CrossRefGoogle Scholar
  105. Zell, M. and Balischmiter, K. (1980). Baseline studies of global pollution — III. Trace analysis of polychlorinated biphenyls (PCB) by ECD glass capillary gas chromatography in environmental samples of different trophic levels, Fresenius Z. Anal. Chem., 304, 337–349.CrossRefGoogle Scholar
  106. Zweig, G. and Sherma, J. (1963/1988) (ed.) Analytical Methods for Pesticides and Plant Growth Regulators, vol. I–XVII, Academic Press, Orlando, FL.Google Scholar
  107. Wegler, R. (1970/1982). Chemie der Pflanzenschutz- und Schädlingsbekämpfungsmittel, Springer, Berlin.Google Scholar

Copyright information

© Ellis Horwood Limited 1990

Authors and Affiliations

  • Hans-Juergen Stan

There are no affiliations available

Personalised recommendations