Late Neogene Arctic Paleoceanography: Micropaleontology, Stable Isotopes, and Chronology

  • Yvonne Herman
  • J. K. Osmond
  • B. L. K. Somayajulu

Abstract

The climatic history of the Arctic has been a matter of debate ever since the systematic sampling and study of seafloor sediments commenced several decades ago. The early Soviet investigators (Sacks, Belov, and Lapina, 1955), using radium distribution in sedimentary cores, estimated that rates of sediment accumulation in the entire basin were 1.2–2 cm/103 yr. These values are an order of magnitude higher than rates based on uranium series isotope dates (Ku and Broecker, 1967; Herman and Osmond, 1984; Chapter 22 of this volume). Linkova (1965) was the first to determine the magnetic polarity of Arctic basin sedimentary cores. Her studies demonstrated conclusively that sediment accumulation rates on topographic highs, such as the Lomonosov Ridge, are extremely slow, ~1–3 mm/103 yr. Similar results were obtained for the Alpha-Mendeleev Rise (Hunkins et al., 1971; Aksu, 1985a; Aksu and Mudie, 1985).

Keywords

Radium Fractionation Stratification Petrol Gravel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aagaard, K. 1981. On the deep circulation in the Arctic Ocean. Deep-Sea Res. 28A):251–268.Google Scholar
  2. Aksu, A. E. 1985a. Paleomagnetic stratigraphy of the CESAR cores. In H. R. Jackson, P. J. Mudie, and S. M. Blasco (eds.), Initial Geological Report on CESAR, The Canadian Expedition to Study the Alpha Ridge, Arctic Ocean. Geol. Survey Canada Paper 84–22, pp. 101–114.Google Scholar
  3. Aksu, A. E. 1985b. Planktonic foraminiferal and oxygen isotopic stratigraphy of CESAR cores 102 and 103: Preliminary results. In H. R. Jackson, P. J. Mudie, and S. M. Blasco (ed.), Initial Geological Report on CESAR,The Canadian Expedition to Study the Alpha Ridge, Arctic Ocean. Geol. Survey Canada Paper 84–22, pp. 115–124.Google Scholar
  4. Aksu, A. E., and P. J. Mudie. 1985. Magnetostratigraphy and palynology demonstrate at least 4 million years of Arctic Ocean sedimentation. Nature 318:280–283.Google Scholar
  5. Amin, B. S., S. Biswas, D. Lal, and B. L. K. Somayajulu. 1972. Radiochemical measurements of 10Be and 7Be formation cross sections in oxygen by 135 and 550 MeV protons. Nucl. Phys.195A:20.Google Scholar
  6. Amin, B. S., D. Lal, and B. K. L. Somayajulu. 1975. Chronology of marine sediments using 10Be method: Intercomparison with other methods. Geochim. Cosmochim. Acta 39:1,187–1,192.Google Scholar
  7. Andrew, J. A., and J. H. Kravitz. 1974. Sediment distribution in deep areas of the Northern Kara Sea. In Y. Herman (ed.), Marine Geology and Oceanography of the Arctic Seas. Springer-Verlag, New York, pp. 231–256.Google Scholar
  8. Arnold, A. J. 1983. Phyletic evolution in the Globorotalia crassaformis (Galloway and Wissler) lineage: A preliminary report. Paleobiology 9:390–397.Google Scholar
  9. Arnold, J. R. 1956. Beryllium-10 produced by cosmic rays. Science 124:584–585.Google Scholar
  10. Arrhenius, G. 1963. Pelagic sediments. In M. N. Hill (ed.), The Sea: Ideas and Observations on Progress in the Study of the Seas, vol. 3. Inter-science, New York, pp. 655–722.Google Scholar
  11. Bacon, M. P., and C-A. Huh. 1984. Water column distributions of 230Th and 231Pa at three oceanographic sites (abstract). EOS, Trans. AGU 65(16):227.Google Scholar
  12. Bandy, O. L. 1959. Geologic significance of coiling ratios in the foraminifer Globigerina pachyderma (Ehrenberg). Geol. Soc. Am. Bull. 70:1,708.Google Scholar
  13. Bandy, O. L. 1960. The geologic significance of coiling ratios in the foraminifer Globigerina pachyderma (Ehrenberg). J. Paleontol. 34:671–681.Google Scholar
  14. Bandy, O. L., R. E. Casey, and R. C. Wright. 1971. Late Neogene planktonic zonation magnetic reversals, and radiometric dates, Antarctic to the tropics. Biol. Antarctic Seas (4, Antarctic Res. Ser.) 15:1–26.Google Scholar
  15. Bé, A. W. H. 1960. Some observations on Arctic planktonic foraminifera. Contrib. Cushman Found. Foram. Res. 11(2):64–68.Google Scholar
  16. Bé, A. W. H., and O. R. Anderson. 1976. Gametogenesis in planktonic foraminifera. Science 192(4,242):890–892.Google Scholar
  17. Bé, A. W. H., and W. H. Hamlin. 1967. Ecology of recent planktonic foraminifera, III: Distribution in the North Atlantic during the summer of 1962. Micropaleontology 13:87–106.Google Scholar
  18. Bé, A. W. H., and D. S. Tolderlund. 1971. Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian oceans. In B. M. Funnel and W. R. Riedel (eds.), Micropalaeontology of Oceans. Cambridge University Press, Cambridge, pp. 105–149.Google Scholar
  19. Beal, M. A. 1969. Bathymetry and Structure of the Arctic Ocean. Ph.D. thesis, Oregon State University, Corvallis, 204p.Google Scholar
  20. Belanger, P. E., W. B. Curry, and R. K. Matthews. 1981. Core-top evaluation of benthic foraminiferal isotopic ratios for paleo-oceanographic interpretations. Palaeogeog., Palaeoclimatol., Palaeoecol. 33:205–220.Google Scholar
  21. Bender, M. L., G. P. Klinkhammer, and D. W. Spencer. 1977. Manganese in sea-water and marine manganese balance. Deep-Sea Res. 24:799–812.Google Scholar
  22. Bennike, O. 1987. Plio-Pleistocene environment at Kap-København, Eastern North Greenland. XII INQUA Congress, Ottawa, Abs. Vol., p. 127.Google Scholar
  23. Berger, W. H. 1968. Planktonic foraminifera: Selective solution and paleoclimatic interpretation. Deep-Sea Res. 15:31–43.Google Scholar
  24. Berger, W. H. 1970. Planktonic foraminifera: Selective solution and the lysocline. Marine Geol. 8:111–138.Google Scholar
  25. Berger, W. H. 1973. Deep-sea carbonates: Pleistocene dissolution cycles. J. Foram. Res. 3:187–195.Google Scholar
  26. Berger, W. H. 1976. Biogenous deep-sea sediments: Production, preservation and interpretation. In J. P. Riley and R. Chester (eds.), Treatise on Chemical Oceanography, vol. 5. Academic Press, London, pp. 265–387.Google Scholar
  27. Berger, W. H. 1981. Paleoceanography: The deep-sea record. In C. Emiliani (ed.), The Oceanic Lithosphere: The Sea, vol. 7. Wiley & Sons, New York, pp. 1,437–1,520.Google Scholar
  28. Berger, W. H. 1982. Deep-sea stratigraphy: Cenozoic climatic steps and the search for chemo-climatic feedback. In G. Einsele and A. Seilacher (eds.), Cyclic and Event Stratification. Springer-Verlag, Berlin, pp. 121–157.Google Scholar
  29. Berger, W. H., and G. R. Heath. 1968. Vertical mixing in pelagic sediments. J. Marine Res. 26(2):134–143.Google Scholar
  30. Berger, W. H., and E. Vincent. 1986. Deep-sea carbonates: Reading the carbon-isotope signal. Geol. Rundsch. 75(1):249–269.Google Scholar
  31. Berggren, W. A. 1971. Multiple phylogenetic zonation of the Cenozoic based on planktonic foraminifera. In A. Farinacci (ed.), Proceedings of the II Planktonic Conference, Roma 1970. Edizioni Tecnoscienza, Rome, pp. 41–56.Google Scholar
  32. Berggren, W. A. 1977. Late Neogene planktonic foraminiferal biostratigraphy of the Rio Grande Rise (South Atlantic). Marine Micropaleontol. 2:265–313.Google Scholar
  33. Berry, R. W., and W. D. Johns. 1966. Mineralogy of the clay-sized fractions of some North Atlantic-Arctic Ocean bottom sediments. Geol. Soc. Am. Bull. 77(2):183–195.Google Scholar
  34. Bignot, G., and L. Dangeard. 1976. Contribution à l’étude de la fraction biogene des nodules polymétalliques des fonds océaniques actuels. C.R. Somm. Soc. Geol. Fr. 18(3):96–99.Google Scholar
  35. Boltovskoy, E. 1959. Foraminifera as biological indicators in the study of ocean currents. Micropaleontology 5(4):473–481.Google Scholar
  36. Boltovskoy, E., and R. Wright. 1976. Recent Foraminifera. W. Junk, The Hague, 515p.Google Scholar
  37. Boström, K., O. Joensuu, and I. Brohm. 1974. Plankton: Its chemical composition and its significance as a source of pelagic sediments. Chem. Geol. 14:255–271.Google Scholar
  38. Bradshaw, J. S. 1959. Ecology of living planktonic foraminifera of the north and equatorial Pacific Ocean. Cushman Found. Foram. Res. Contr. 10(2):25–64.Google Scholar
  39. Bramlette, M. N., and W. H. Bradley. 1941. Geology and biology of North Atlantic deep sea cores between Newfoundland and Ireland, I: Lithology and geologic interpretations, U.S. Geol. Surv. Prof. Paper 196A, pp. 1–34.Google Scholar
  40. Brown, L. 1984. Applications of accelerator mass spectrometry. Ann. Rev. Earth Planet. Sci. Lett. 12:39–59.Google Scholar
  41. Budyko, M. I. 1977. Climatic Changes. Waverly Press, Inc., Baltimore, 261p.Google Scholar
  42. Bukry, D. 1981. Cretaceous Arctic silicoflagellates. Geo-Marine Lett. 1(1):57–63.Google Scholar
  43. Bukry, D. 1984. Paleogene paleoceanography of the Arctic Ocean is constrained by the Middle or Late Eocene age of USGS Core Fl-422: Evidence from silicoflagellates. Geology 12(4): 199–201.Google Scholar
  44. Bukry, D. 1985. Correlation of Late Cretaceous Arctic silicoflagellates from Alpha Ridge. In H. R. Jackson, P. J. Mudie, and S. M. Blasco (eds.), Initial Geological Report on CESAR, The Canadian Expedition to Study the Alpha Ridge, Arctic Ocean. Geol. Survey Canada Paper 84–22, pp. 125–135.Google Scholar
  45. Burns, V. M., and R. G. Burns. 1978. Diagenetic features observed inside deep-sea manganese nodules from the north equatorial Pacific. Scanning Electron Microscopy 1:245–252.Google Scholar
  46. Caron, M., and P. Homewood. 1983. Evolution of early planktonic foraminifers. Marine Micropaleontol. 7:453–462.Google Scholar
  47. Carroll, D. 1970. Clay minerals in Arctic Ocean sea floor sediments. J. Sed. Petrol. 40(3):814–821.Google Scholar
  48. Carsola, A. J. 1952. Marine Geology of the Arctic Ocean and Adjacent Seas off Alaska and Northwestern Canada. Ph.D. thesis, University of California, Los Angeles, 226p.Google Scholar
  49. Charlesworth, J. K. 1957. The Quaternary Era. E. Arnold, Ltd., London, 2 vols., 1,700p.Google Scholar
  50. Chipman, W. A., T. R. Rice, and T. J. Price. 1958. Uptake and accumulation of radioactive zinc by marine plankton, fish, and shellfish. U.S. Fish Wild. Serv. Bull. 58:279–292.Google Scholar
  51. Cifelli, R. 1969. Radiation of Cenozoic planktonic foraminifera. Syst. Zool. 18:154–168.Google Scholar
  52. Cifelli, R. 1974. Planktonic foraminifera from the Mediterranean and adjacent Atlantic waters (cruise 49 of the Atlantis II, 1969). J. Foram. Res. 4(4):171–183.Google Scholar
  53. Cifelli, R. 1982. Textural observations on some living species of planktonic foraminifera. Smithsonian Contr. Paleobiol. 45:1–45.Google Scholar
  54. Cifelli, R., and R. K. Smith. 1970. Distribution of planktonic foraminifera in the vicinity of the North Atlantic Current. Smithsonian Contr. Paleobiol. 4:1–52.Google Scholar
  55. Cifelli, R., and R. K. Smith. 1974. Distribution patterns of planktonic foraminifera in the western North Atlantic. J. Foram. Res. 4(3):112–125.Google Scholar
  56. Clark, D. L. 1969. Paleoecology and sedimentation in part of the Arctic Basin. Arctic 22(3):233–245.Google Scholar
  57. Clark, D. L. 1970. Magnetic reversals and sedimentation rates in the Arctic Ocean. Geol. Soc. Am. Bull. 81(10):3,129–3,134.Google Scholar
  58. Clark, D. L. 1971. Arctic Ocean ice cover and its Late Cenozoic history. Geol. Soc. Am. Bull. 82(12):3,313–3,323.Google Scholar
  59. Clark, D. L. 1974. Late Mesozoic and early Cenozoic sediment cores from the Arctic Ocean. Geology 2(1):41–44.Google Scholar
  60. Clark, D. L. 1975. Geological history of the Arctic Ocean Basin. In C. J. Yorath, E. R. Parker, and D. J. Glass (eds.), Canada’s Continental Margins and Offshore Petroleum Exploration. Can. Soc. Petrol. Geol. Mem. 4, pp. 501–524.Google Scholar
  61. Clark, D. L. 1977a. Climatic factors of the late Mesozoic and Cenozoic Arctic Ocean. In M. Dunbar (ed.), Polar Oceans. Arctic Institute of North America, Calgary, Alberta, pp. 603–615.Google Scholar
  62. Clark, D. L. 1977b. Paleontologic response to post-Jurassic crustal plate movements in the Arctic Ocean. In R. M. West (ed.), Paleontology and Plate Tectonics. Milwaukee Pub. Museum, Spec. Publ. Biol. Geol. 2, pp. 55–76.Google Scholar
  63. Clark, D. L. 1981. Geology and geophysics of the Amerasia Basin. In A. E. M. Nairn, M. Churkin Jr., and F. G. Stehli (eds.), The Ocean Basins and Margins, 5, The Arctic Ocean. Plenum, New York, pp. 599–634.Google Scholar
  64. Clark, D. L. 1982a. The Arctic Ocean and post-Jurassic paleoclimatology. In W. Berger and J. Crowell (eds.), Climate in Earth History: Studies in Geophysics. National Academy Press, Washington, D.C., pp. 133–138.Google Scholar
  65. Clark, D. L. 1982b. Origin, nature and world climate effect of Arctic Ocean ice cover. Nature 300(5,890):321–325.Google Scholar
  66. Clark, D. L. 1984. Determining the age of Arctic Ocean sediment cores. 13th Ann. Arctic Workshop. University of Colorado, Boulder, pp. 46–47.Google Scholar
  67. Clark, D. L., R. R. Whitman, K. A. Morgan, and S. D. Mackay. 1980. Stratigraphy and glacial-marine sediments of the Amerasia Basin, central Arctic Ocean. Geol. Soc. Am. Spec. Paper 181, 57p.Google Scholar
  68. Coachman, L. K., and K. Aagaard. 1974. Physical oceanography of the Arctic and Subarctic seas. In Y. Herman (ed.), Marine Geology and Oceanography of the Arctic Seas. Springer-Verlag, New York, pp. 1–72.Google Scholar
  69. Cochran, J. K., and J. K. Osmond. 1974. Gamma spectrometry of deep sea cores and sediment accumulation rates. Deep-Sea Res. 21:721–737.Google Scholar
  70. Correns, C. W. 1941. Nachr. Ges. Wiss. Göttingen Math-Phys. Kl. 5:219p.Google Scholar
  71. Colbourn, W. T., F. L. Parker, and W. H. Berger. 1980. Faunal and solution patterns of planktonic foraminifera in surface sediments of the North Pacific. Marine Micropaleontol. 5:329–399.Google Scholar
  72. Craig, H., and L. I. Gordon. 1965. Isotopic oceanography. In Symposium in Marine Geochemistry, 3. Narragansett Marine Laboratory, University of Rhode Island, pp. 277–374.Google Scholar
  73. Cromie, W. J. 1961. Preliminary results of investigations on Arctic drift station “Charlie.” In G. O. Raasch (ed.), Geology of the Arctic, vol. 1. University of Toronto Press, Toronto, pp. 690–708.Google Scholar
  74. Crowell, J. C., and L. A. Frakes. 1970. Phanerozoic glaciation and the causes of ice ages. Am. J. Sci. 268:193–224.Google Scholar
  75. Curry, W. B., and R. K. Matthews. 1979. Isotopic fractionation in recent fossil planktonic foraminifera from the Indian Ocean: Analysis of equilibrium and disequilibrium patterns. Geol. Soc. Am. Abstr. 11:408.Google Scholar
  76. Cushman, J. A. 1948. Arctic foraminifera. Cushman Lab. Foram. Res. Spec. Pub. 23, 79p.Google Scholar
  77. Darby, D. A. 1971. Carbonate Cycles and Clay Mineralogy of Arctic Ocean Sediment Cores. Ph.D. thesis, University of Wisconsin, Madison, 117p.Google Scholar
  78. Deuser, W. G. 1979. Seasonal changes in isotopic and species composition of foraminifera collected in a deep-water sediment trap. Geol. Soc. Am. Abstr. 11:412.Google Scholar
  79. Dugolinsky, B. K., S. V. Margolis, and W. C. Dudley. 1977. Biogenic influence on growth of manganese nodules. J. Sediment. Petrol. 47:428–445.Google Scholar
  80. Duplessy, J. C. 1978. Isotopic studies. In J. Gribbin (ed.), Climatic Change. Cambridge University Press, Cambridge, pp. 46–67.Google Scholar
  81. Duplessy, J. C., and Y. Herman. 1986a. Staffe isotopic and faunal variations in planktonic foraminifera from the Arctic Ocean. In Fifteenth Annual Arctic Workshop and Symposium. Univ. Colorado, Boulder, Proc. Vol. 10–12.Google Scholar
  82. Duplessy, J. C., and Y. Herman. 1986b. Foraminifera and pteropoda beneath the Arctic sea-ice: New distributions and paleoceanographic implications. In Fifteenth Annual Arctic Workshop and Symposium. Univ. Colorado, Boulder, Proc. vol. 13–15.Google Scholar
  83. Duplessy, J. C., Y. Herman, and J. K. Osmond. 1984. Late Quaternary Arctic paleoceanography: Stable isotopes, micropaleontology and chronology (abstract). Geol. Soc. Am., Abstracts with Programs 497.Google Scholar
  84. Duplessy, J. C., C. Lalou, and A. C. Vinot. 1970. Differential isotopic fractionations in benthic foraminifera and paleotemperatures reassessed. Science 168:250–251.Google Scholar
  85. Durazzi, J. T. 1981. Stable isotope studies of planktonic foraminifera in North Atlantic core tops. Palaeogeog., Palaeoclimatol. Palaeoecol. 33:157–172.Google Scholar
  86. Elmstrom, K. M., and J. P. Kennett. 1985. Late Neogene paleoceanographic evolution of site 590: Southwest Pacific. In J. P. Kennett, C. C. von der Borch, et al. (eds.), Initial Rpts. DSDP 90. U.S. Government Printing Office, Washington, D.C., pp. 1,361–1,381.Google Scholar
  87. Emiliani, C. 1955. Pleistocene temperatures. J. Geol. 63(6):538–573.Google Scholar
  88. Emiliani, C. 1964. Paleotemperature analysis of the Caribbean cores A254-BR-C and CP-28. Geol. Soc. Am. Bull. 75:129–143.Google Scholar
  89. Emiliani, C. 1966a. Isotopic paleotemperatures. Science 154:851–857Google Scholar
  90. Emiliani, C. 1966b. Paleotemperature analysis of Caribbean cores P6304–8 and P6304–9 and a generalized temperature curve of the past 425,000 years. J. Geol. 74(2):109–124.Google Scholar
  91. Emiliani, C. 1967. The Pleistocene record of the Atlantic and Pacific oceanic sediments; correlations with the Alaskan stages by absolute dating; and the age of the last reversal of the geomagnetic field. Progr. Oceanogr. 4:219–224.Google Scholar
  92. Emiliani, C. 1971. The amplitude of Pleistocene climatic cycles at low latitudes and the isotopic composition of glacial ice. In Karl K. Turekian (ed.), The Late Cenozoic Glacial Ages. Yale University Press, New Haven, Conn., pp. 183–197.Google Scholar
  93. Epstein, S., R. Buchsbaum, H. Lowenstam, and H. C. Urey. 1953. Revised carbonate-water isotopic temperature scale. Geol. Soc. Am. Bull. 64:1,315–1,325.Google Scholar
  94. Erez, J., S. Honjo, and N. J. Shackleton. 1979. Isotopic composition of planktonic foraminifera in plankton tows, sediment traps and sediments. Geol. Soc. Am. Abstr. 11:421.Google Scholar
  95. Ericson, D. B. 1959. Coiling direction of Globigerina pachyderma as a climatic index. Science 130:219–220.Google Scholar
  96. Ericson, D. B., and G. Wollin. 1973. Precipitation of manganese oxide in deep-sea sediments. Inter-University Program of Research on Ferromanganese Deposits of the Ocean Floor Phase I Report. National Science Foundation, Washington, D.C., pp. 99–103.Google Scholar
  97. Ericson, D. B., W. M. Ewing, and G. Wollin. 1964. Sediment cores from the Arctic and sub-Arctic seas. Science 144(3,623):1,183–1,192.Google Scholar
  98. Fetter, F. C. 1973. Recent Deep-Sea Benthic Foraminifera from the Alpha Ridge Province of the Arctic Ocean. M.S. thesis, Florida State University, Tallahassee, 121p.Google Scholar
  99. Finkel, R., S. Krishnaswami, and D. L. Clark. 1977. 10Be in Arctic Ocean sediments. Earth Planet. Sci. Lett. 35:109–204.Google Scholar
  100. Fortin, L., and M. A. Meyland. 1977. Bibliography and Index to Literature on Manganese Nodules. Hawaii Institute of Geophysics Publ., Hawaii, 180p.Google Scholar
  101. Fowler, S. W., and L. F. Small. 1967. Moulting as a possible mechanism for vertical transport of zinc-65 in the sea. J. Oceanol. Limnol 1:237–245.Google Scholar
  102. Fujita, Y., Y. Taguchi, M. Imamura, T. Inoue, and S. Tanaka. 1975. A low-level needle counter. Nucl. Instrum. Meth. 128:523–524.Google Scholar
  103. Funder, S., K. S. Petersen, and L. A. Simonarson. 1987. The early Pleistocene Arctic Ocean: View from the beach. XII INQUA Cong., Ottawa,Abs. 170.Google Scholar
  104. Funder, S., N. Abrahamsen, P. Bennike, and R. W. Feyling-Hanssen. 1985. Forested Arctic: Evidence from North Greenland. Geology 13:542–546.Google Scholar
  105. Galt, J. A. 1967. Current Measurements in the Canada Basin of the Arctic Ocean, Summer 1965. University of Washington, Department of Oceanography, Technical Report 184, 17p.Google Scholar
  106. Gilbert, M. W., and D. L. Clark. 1983. Central Arctic Ocean paleoceanographic interpretations based on Late Cenozoic calcareous dinoflagellates. Marine Micropaleontol. 7(5):385–401.Google Scholar
  107. Goel, P. S., D. P. Kharkar, D. Lal, N. Narasappaya, B. Peters, and V. Yatirajam. 1957. Beryllium-10 concentration in deep sea sediments. Deep-Sea Res. 4:202–210.Google Scholar
  108. Golbert, T. A. 1985. Globigerina hermanae Golbert. In V. I. Gudina and A. V. Kanegin (eds.), Microfauna Phanerozoi Sibiri Sibirskoe Otdelenie. Truda Instituta Geologii i Geophyziki, 615, pp. 68–70, 123–125.Google Scholar
  109. Goldberg, E. D., and G. Arrhenius. 1958. Chemistry of Pacific pelagic sediments. Geochim. Cosmochim. Acta 13:153–212.Google Scholar
  110. Gorbunov, G. 1946. Bottom life of the Novosiberian shoal-waters and the central part of the Arctic Ocean, Vol. 3, Compendium of Results of Drifting Expedition of Ice-Breaker “Sedov” 1937–1940. Chief Office of North Road, Moscow, 138p.Google Scholar
  111. Gould, S. J., and N. Eldredge. 1977. Punctuated equilibria: The tempo and mode of evolution reconsidered. Paleobiology 3:115–151.Google Scholar
  112. Graham, D. W., B. H. Corliss, M. L. Bender, and L. D. Keigwin, Jr. 1981. Carbon and oxygen isotopic disequilibria of recent deep-sea benthic foraminifera. Marine Micropaleontol. 6:483–497.Google Scholar
  113. Graham, J. W. 1959. Metabolically induced precipitation of trace elements from seawater. Science 129:1428–1429.Google Scholar
  114. Green, E. 1960. Ecology of some Arctic foraminifera. Micropaleontology 6(1):57–78.Google Scholar
  115. Greenslate, J. L., J. Z. Frazer, and G. Arrhenius. 1973. Origin and deposition of selected transition elements in the seabed. In M. Morgenstein (ed.), The Origin and Distribution of Manganese Nodules in the Pacific and Prospects for Exploration. Honolulu, pp. 45–69.Google Scholar
  116. Griffin, J. J., H. Windom, and E. D. Goldberg. 1968. The distribution of clay minerals in the World Ocean. Deep-Sea Res. 15:433–459.Google Scholar
  117. Grossman, E. L. 1984. Carbon isotopic fractionation in live benthic foraminifera—comparison with inorganic precipitate studies. Geochim. Cosmochim. Acta 48:1,505–1,512.Google Scholar
  118. Grossman, E. L. 1987. Stable isotopes in modern benthic foraminifera: A study of vital effect. J. Foram. Res. 17(1):48–61.Google Scholar
  119. Hayes, D. E., and L. A. Frakes. 1975. General synthesis, Deep Sea Drilling Project, Leg 28. In D. E. Hayes et al. (eds.), Initial Repts. DSDP 28. U.S. Government Printing Office. Washington, D.C., pp. 914–942.Google Scholar
  120. Herman, Y. 1963. Temperate water planktonic foraminifera in Quaternary sediments of the Arctic Ocean. Nature 20–1(4,917):386–387.Google Scholar
  121. Herman, Y. 1969. Arctic Ocean Quaternary microfauna and its relation to paleoclimatology. Palaeogeogr., Palaeoclimatol. Palaeoecol. 6:251–276.Google Scholar
  122. Herman, Y. 1970. Arctic paleoceanography in late Cenozoic time. Science 169:474–477.Google Scholar
  123. Herman, Y. 1971. Vertical and horizontal distribution of pteropods in Quaternary sequences. In B. M. Funnel and W. R. Riedel (eds.), The Micropalaeontology of Oceans. Cambridge University Press, Cambridge, pp. 463–486.Google Scholar
  124. Herman, Y. 1974. Arctic Ocean sediments, microfauna and the climatic record in late Cenozoic time. In Y. Herman (ed.), Marine Geology and Oceanography of the Arctic Seas. Springer-Verlag, New York, pp. 283–348.Google Scholar
  125. Herman, Y. 1978. Pteropods. In B. U. Haq and A. Boersma (eds.), Introduction to Marine Micropaleontology. Elsevier, New York and Oxford, pp. 151–160.Google Scholar
  126. Herman, Y. 1979. Plankton distribution in the past. In S. van der Spoel and A. C. Pierrot-Bults (eds.), Zoogeography and Diversity of Plankton. Bunge Scientific Publisher, Utrecht, pp. 29–49.Google Scholar
  127. Herman, Y. 1983. Baffin Bay: Present day analog of the Central Arctic during late Pliocene to mid-Pleistocene time. Geology 11:356–359.Google Scholar
  128. Herman, Y. 1984a. Arctic paleoceanography in late Neogene time and its relationship to the evolution of Northern Hemisphere glaciations. Proc. XXVIIth Int’1. Geol. Cong., Moscow, Colloquium O 4:162–173.Google Scholar
  129. Herman, Y. 1984b. Arctic ice cover history and chronology in late Neogene time. Proc. XXVIIth Intl. Geol. Cong., Moscow, Colloquium O 3:156–162.Google Scholar
  130. Herman, Y. 1984c. Comment and reply on “Baffin Bay: Present day analog to the Central Arctic during late Pliocene to mid-Pleistocene time.” Geology 12:379–380.Google Scholar
  131. Herman, Y. 1985. Arctic paleoceanography in late Neogene time and its relationship to global climates. Inter-Nord 17:9–14.Google Scholar
  132. Herman, Y., and D. M. Hopkins. 1980. Arctic oceanic climate in Late Cenozoic time. Science 209(4,456):557–562.Google Scholar
  133. Herman, Y., and H. Keupp, 1987. Biochronology and geochronology of late Neogene Central Arctic deep-sea cores. Proc. Arctic Symposium and Workshop, Polar Research. Google Scholar
  134. Herman, Y., and M. C. Metz. 1972. Staining technique for recent and fossil calcareous invertebrates. J. Paleontol. 46:152.Google Scholar
  135. Herman, Y., and J. R. O’Neil. 1975. Arctic paleosalinities during Late Cenozoic time. Nature 258(5,536):591–595.Google Scholar
  136. Herman, Y., and J. K. Osmond. 1984. Late Neogene Arctic paleoceanography: Micropaleontology and chronology. In A. Berger, J. Imbrie, J. Hays, G. Kukla, and B. Saltzmann (eds.), Milankovitch and Climate. Reidel, Dordrecht, pp. 241–250.Google Scholar
  137. Hier, W. D., III. 1980. Sea ice growth, drift and decay. In Samuel C. Colbeck (ed.), Dynamics of Snow and Ice Masses. Academic Press, New York, pp. 141–209.Google Scholar
  138. Hooper, P. W. P., and P. P. E. Weaver. 1987. Paleoceanographic significance of late Miocene to early Pliocene planktonic foraminifers at Deep Sea Drilling Project Site 609. In W. F. Ruddiman, R. B. Kidd, E. Thomas, et al. (eds.), Initial Rpts. DSDP 94. U.S. Government Printing Office, Washington, D.C., pp. 925–934.Google Scholar
  139. Hughes, T., G. Denton, and M. Grosswald. 1977. Was there a late-Würm Arctic ice sheet? Nature 266:596–602.Google Scholar
  140. Hunkins, K. L., E. M. Thorndike, and G. Mathieu. 1969. Nepheloid layers and bottom currents in the Arctic Ocean. J. Geophys. Res. 74:6,995–7,008.Google Scholar
  141. Hunkins, K., A. W. H. Bé, N. D. Opdyke, and G. Mathieu. 1971. The late Cenozoic history of the Arctic Ocean. In K. K. Turekian (ed.), The Late Cenozoic Glacial Ages. Yale University Press, New Haven, Conn., pp. 215–237.Google Scholar
  142. Ingle, J. C., Jr. 1973. Summary comments on Neogene biostratigraphy, physical stratigraphy, and paleoceanography in the marginal north-eastern Pacific Ocean. In L. D. Kulm and R. von Huene (eds.), Initial Rpts. DSDP 18. U.S. Government Printing Office, Washington, D.C., pp. 949–960.Google Scholar
  143. Kahn, M. I. 1979. Non-equilibrium oxygen and carbon isotopic fractionation in tests of living planktonic foraminifera. Oceanol. Acta 2:195–208.Google Scholar
  144. Kahn, M. I., and D. F. Williams. 1981. Oxygen and carbon isotopic composition of living planktonic foraminifera from the northeast Pacific Ocean. Palaeogeogr., Palaeoclimatol., Palaeoecol. 33:47–69.Google Scholar
  145. Keigwin, L. D., Jr. 1978. Pliocene closing of the Isthmus of Panama, based on biostratigraphic evidence from nearby Pacific Ocean and Caribbean Sea cores. Geology 6:630–634.Google Scholar
  146. Keigwin, L. D. 1987. Pliocene stable isotope record of Deep Sea Drilling Project Site 606: Sequential events of 18O enrichment beginning at 3.1 Ma. In W. F. Ruddiman, R. B. Kidd, E. Thomas, et al. (eds.), Initial Rpts. DSDP 94. U.S. Government Printing Office, Washington, D.C., pp. 911–920.Google Scholar
  147. Keigwin, L. D., M.-P. Aubry, and D. V. Kent. 1987. North Atlantic late Miocene stable-isotope stratigraphy, biostratigraphy, and magnetostratigraphy. In W. F. Ruddiman, R. B. Kidd, and E. Thomas et al. (eds.), Initial Rpts. DSDP 94. U.S. Government Printing Office, Washington, D.C., pp. 935–964.Google Scholar
  148. Keller, G. 1978. Late Neogene biostratigraphy and paleoceanography of DSDP Site 310 central North Pacific and correlation with the southwest Pacific. Marine Micropaleontol. 3:97–119.Google Scholar
  149. Keller, G. 1983. Biochronology and paleoclimatic implications of Middle Eocene to Oligocene planktonic foraminiferal faunas. Marine Micropaleontol. 7:463–486.Google Scholar
  150. Kennett, J. P. 1978. The development of planktonic biogeography in the Southern Ocean during the Cenozoic. Marine Micropaleontol. 3:301–345.Google Scholar
  151. Kennett, J. P., and M. S. Srinivasan. 1980. Surface ultrastructural variation in Neogloboquadrina pachyderma (Ehrenberg): Phenotypic variation and phylogeny in the Late Cenozoic. Cushman Found, Spec. Pub. 19:134–162.Google Scholar
  152. Kitchell, J. A., J. F. Kitchell, G. L. Johnson, and K. L. Hunkins. 1978. Abyssal traces and megafauna: Comparison of productivity, diversity and density in the Arctic and Antarctic. Paleobiology 4:171–180.Google Scholar
  153. Krishnaswami, S. A., and M. M. Sarin. 1976. The simultaneous determination of Th, Pu, Ra isotopes 210Pb, 55Fe, 32Si, and 14C in marine suspended phases. Anal. Chem. Acta 83:143–156.Google Scholar
  154. Kroopnick, P., S. V. Margolis, and C. S. Wong. 1977. δ13C variations in marine carbonate sediments as indicators of the CO2 balance between atmosphere and oceans. In N. R. Anderson and A. Malahoff (eds.), The Fate of Fossil Fuel CO 2 in the Oceans. Plenum, New York, pp. 295–321.Google Scholar
  155. Ku, T. L., and W. S. Broecker. 1967. Rates of sedimentation in the Arctic Ocean. In M. Sears (ed.), Progress in Oceanography, vol. 4. Pergamon Press, New York, pp. 95–104.Google Scholar
  156. Ku, T. L., M. Kusakabe, J. R. Southon, J. S. Vogel, and D. E. Nelson. 1984. 10Be distributions in Deep Sea Drilling project sediments studied by accelerator mass spectrometry (abstract). EOS, Trans. AGU 65:949.Google Scholar
  157. Kvasov, D. D., and A. I. Blazhchishin. 1978. The key to sources of the Pliocene and Pleistocene glaciation is at the bottom of the Barents Sea. Nature 273:138–140.Google Scholar
  158. Lagoe, M. B. 1977. Recent benthic foraminifera from the central Arctic Ocean. J. Foram Res. 7(2):106–129.Google Scholar
  159. Lal, D., and B. Peters. 1967. Cosmic ray produced radioactivity on the earth. Handbuch der Physik 46:551–612.Google Scholar
  160. Leonard, K. A., D. F. Williams, and R. C. Thunell. 1983. Pliocene paleoclimatic and paleoceanographic history of the South Atlantic Ocean: Stable isotopic records from leg 72 Deep Sea Drilling Project holes 516A and 517. In P. F. Barker, R. L. Carlson, and D. A. Johnson (eds.), Initial Rpts. DSDP 72. U.S. Government Printing Office, Washington, D.C., pp. 895–906.Google Scholar
  161. Linkova, T. I. 1965. Some results of paleomagnetic study of Arctic Ocean floor sediments. In The Present and Past of the Geomagnetic Field. Nauka, Moscow, Directorate of Scientific Info. Serv. CRB Canada, pp. 279–291.Google Scholar
  162. Loeblich, A. R., Jr., and H. Tappan. 1953. Studies of Arctic Foraminifera. Smithsonian Miscellaneous Collections, vol. 121, 150p.Google Scholar
  163. Loeblich, A. R., Jr., and H. Tappan. 1964. Foraminiferida. In R. C. Moore (ed.), Treatise on Invertebrate Paleontology, Part C, Protista, 2(2 vols.). University of Kansas Press, Lawrence, 900p.Google Scholar
  164. McCorkell, R. H., E. L. Fireman, and C. C. Langway Jr. 1967. Aluminum-26 and beryllium-10 in Greenland ice. Science 150:1,690–1,692.Google Scholar
  165. McCoy, F. W. 1980. Photographic analysis of coring. Marine Geol 38:263–282.Google Scholar
  166. McCoy, F. W. 1985. Mid-core flow-in: Implications for stretched stratigraphic sections in piston cores. J. Sed. Petrol. 55(4):608–610.Google Scholar
  167. Macko, S. A., and A. E. Aksu. 1986. Amino acid epimerization in planktonic foraminifera suggests slow sedimentation rates for Alpha Ridge, Arctic Ocean. Nature 322:730–732.Google Scholar
  168. Malmgren, B. A. 1983. Ranking of dissolution susceptibility of planktonic foraminifera at high latitudes of the South Atlantic Ocean. Marine Micropaleontol. 8:183–191.Google Scholar
  169. Malmgren, B. A. 1987. Differential dissolution of Upper Cretaceous planktonic foraminifera from a temperate region of the South Atlantic Ocean. Marine Micropaleontol. 11:251–271.Google Scholar
  170. Malmgren, B. A., and J. P. Kennett. 1981. Phyletic gradualism in a Late Cenozoic planktonic foraminiferal lineage: DSDP Site 284, southwest Pacific. Paleobiology 7:230–240.Google Scholar
  171. Malmgren, B. A., W. A. Berggren, and G. P. Lohmann. 1983. Evidence for punctuated gradualism in the Late Neogene Globorotalia tumida lineage of planktonic foraminifera. Paleobiology 9:377–389.Google Scholar
  172. Mangini, A., M. Segl, G. Bonani, H. J. Jofman, E. Morenzoni, M. Nessi, M. Suter, W. Wolfli, and K. K. Turekian. 1984. Mass spectrometric 10Be dating of deep sea sediments applying the Zürich tandem accelerator. Nucl. Instrum. Meth. Phys. Res. B5:353–358.Google Scholar
  173. Margolis, S. V., and Y. Herman. 1980. Northern Hemisphere sea-ice and glacial development in the Late Cenozoic. Nature 286(5,769):145–149.Google Scholar
  174. Markussen, B., R. Zahn, and J. Thiede. 1985. Late Quaternary sedimentation in the Eastern Arctic basin. Stratigraphy and depositional environment. Palaeogeog., Palaeoclimatol. Palaeoecol. 50:271–284.Google Scholar
  175. Martin, J. H. 1970. The possible transport of trace metals via moulted copepod exoskeletons. Limnol. Oceanogr. 15:756–761.Google Scholar
  176. Martin, J. H., and G. A. Knauer. 1973. The elemental composition of plankton. Geochim. Cosmochim. Acta 37:1,639–1,653.Google Scholar
  177. Maykut, G. A., and N. Untersteiner. 1971. Some results from a time-dependent thermodynamic model of sea ice. J. Geophys. Res. 76:1,550–1,575.Google Scholar
  178. Mayr, E. 1963. Animal Species and Evolution. Harvard University Press, Cambridge, Mass., 797p.Google Scholar
  179. Mayr, E. 1970. Population, Species, and Evolution. Harvard University Press, Cambridge, Mass., 453p.Google Scholar
  180. Mercer, J. H. 1970. A former ice sheet in the Arctic Ocean? Palaeogeog., Palaeoclimatol., Palaeoecol. 8:19–27.Google Scholar
  181. Monaghan, M. C., S. Krishnaswami, and K. K. Turekian. 1986. The global average production rate of 10Be. Earth Planet. Sci. Lett. 76:279–287.Google Scholar
  182. Mudie, P. J. 1985. Palynology of the CESAR cores, Alpha Ridge. In H. R. Jackson, P. J. Mudie, and S. M. Blasco (eds.), Initial Geological Report on CESAR, The Canadian Expedition to Study the Alpha Ridge,Arctic Ocean. Geol. Survey Canada Paper 84–22, pp. 149–174.Google Scholar
  183. Murray, J., and A. Renard. 1891. Manganese nodules. In C. W. Thomson (ed.), Report of the Scientific Results of the Voyage of the H.M.S. Challenger, 5, Deep Sea Deposits. Eyra and Spottiswoode, London, pp. 341–378.Google Scholar
  184. Naidu, A. S. 1974 Sedimentation in the Beaufort Sea: A synthesis. In Y. Herman (ed.), Marine Geology and Oceanography of the Arctic Seas. Springer-Verlag, New York, pp. 173–190.Google Scholar
  185. Nansen, F. 1906. Northern Waters: Captain Roald Amundsen’s Oceanographic Observations in the Arctic Seas in 1901. Vitensk.-Selsk. Skr., I, Math.-Natury. Kl., 3, 145p.Google Scholar
  186. Naugler, P. F., N. Silverberg, and J. S. Creager. 1974. Recent sediments of the East Siberian Sea. In Y. Herman (ed.), Marine Geology and Oceanography of the Arctic Seas. Springer-Verlag, New York, pp. 191–210.Google Scholar
  187. Nelson, D. E., J. R. Southon, J. S. Vogel, and R.G. Korteling. 1984. Progress in 14C and 10Be dating at SFU Nucl. Instrum. Meth. Phys. Res. B5:139–143.Google Scholar
  188. Nesteroff, W. D., and B. C. Heezen. 1977. Du mode de formation de quelques nodules et encroûtements de ferromanganèse des grands fonds océaniques. C.R. Acad. Sci. Paris 284(D):799–801.Google Scholar
  189. Olsson, R. K. 1971. Pliocene-Pleistocene planktonic foraminiferal biostratigraphy of the Northeastern Pacific. In A. Farinacci (ed.), Proceedings of the Second International Planktonic Conference, vol. 2. Edizioni Tecnoscienza, pp. 921–928.Google Scholar
  190. Osmond, J. K. 1979. Accumulation models of 230Th and 231Pa in deep sea sediments. Earth Sci. Rev. 15:95–150.Google Scholar
  191. Osmond, J. K. 1981. Quaternary deep sea sediments: Accumulation rates and geochronology. In C. Emiliani (ed.), The Sea, vol. 7, The Oceanographic Lithosphere. Wiley, New York, pp. 1,329–1,371.Google Scholar
  192. Osterberg, C. L., A. G. Carey Jr., and H. Curl Jr. 1963. Acceleration of sinking rates of radionuclides in the ocean. Nature 200:1,276–1,277.Google Scholar
  193. Parker, F. L. 1971. Distribution of planktonic foraminifera in Recent deep-sea sediments. In B. M. Funnel and W. R. Riedel (eds.), The Micropalaeontology of Oceans. Cambridge University Press, Cambridge, pp. 289–308.Google Scholar
  194. Paul, A. Z., and R. J. Menzies. 1973. Benthic Ecology of the High Arctic Deep-sea.Technical Rept., Florida State University, Department of Oceanography, Tallahassee, 337p.Google Scholar
  195. Pautot, G., and M. Melguen. 1979. Influence of deep water circulation and sea floor morphology on the abundance and grade of central South Pacific manganese nodules. In J. L. Bischoff and D. Z. Piper (eds.), Marine Geology and Oceanography of the Pacific Manganese Nodule Province. Plenum Press, New York, pp. 621–645.Google Scholar
  196. Raisbeck, G. M., and F. Yiou. 1974. Cross sections for the spallation production of 10Be in targets of N, Mg, and Si and their astrophysical applications. Phys. Rev. C. 9(4):1,383–1,395.Google Scholar
  197. Raisbeck, G. M., F. Yiou, M. Lieuvin, and J. M. Loiseaux. 1978. Measurement of 10Be in 1000 and 5000 year old Antarctic ice. Nature 275:731–733.Google Scholar
  198. Raymo, M. E., W. F. Ruddiman, and B. M. Clement. 1987. Pliocene-Pleistocene paleoceanography of the North Atlantic at Deep Sea Drilling Project Site 609. In W. F. Ruddiman, R. B. Kidd, E. Thomas, et al., Initial Rpts. DSDP 94. U.S. Government Printing Office, Washington, D.C., pp. 895–901.Google Scholar
  199. Repenning, C. A. 1984. Quaternary rodent biochronology and its correlation with climatic and magnetic stratigraphies. In W. E. Mahaney (ed.), Quaternary Chronologies. Geo-Books, London, pp. 105–118.Google Scholar
  200. Repenning, C. A., and E. M. Brouwers. 1987. Mid-Pliocene to late Pleistocene changes in the Arctic Ocean borderland ecosystem. XII INQUA Cong., Ottawa, Abs. 251.Google Scholar
  201. Revelle, R., M. Bramlette, G. Arrhenius, and E. D. Goldberg. 1955. Pelagic sediments of the Pacific. Geol. Soc. Am. Spec. Paper 62, pp. 221–236.Google Scholar
  202. Reynolds, L., and R. C. Thunell. 1985. Seasonal succession of planktonic foraminifera in the subpolar North Pacific. J. Foram. Res. 15(4):282–301.Google Scholar
  203. Reynolds, L. A., and R. C. Thunell. 1986. Seasonal production and morphologic variation of Neogloboquadrina pachyderma (Ehrenberg) in the Northeast Pacific. Micropaleontology 32(1):1–18.Google Scholar
  204. Robe, R. Q. 1980. Iceberg drift and deterioration. In S. G. Colbeck (ed.), Dynamics of Snow and Ice Masses. Academic Press, New York, pp. 211–259.Google Scholar
  205. Sacks, V. N., N. A. Belov, and N. N. Lapina. 1955. Our present concept of the geology of the central Arctic. Priroda (trans.) Defense Research Board (DRB), Canadian Transl. No. T 196 R, 7, 13,1–14. Google Scholar
  206. Schwarzacher, W., and K. L. Hunkins. 1961. Dredged gravels from the Central Arctic Ocean. In G. O. Raasch (ed.), Geology of the Arctic, Proceedings of the International Symposium on Arctic Geology, 1960. University of Toronto Press, Toronto, vol. 1, pp. 666–677.Google Scholar
  207. Scott, G. H. 1983. Divergences and phyletic transformations in the history of the Globorotalia inflata lineage. Paleobiology 9:422–426.Google Scholar
  208. Selli, R. 1967. The Pliocene-Pleistocene boundary in Italian marine sections and its relationship to continental stratigraphies. In M. Sears (ed.), Progress in Oceanography. Pergamon Press, London, vol. 4, pp. 67–86.Google Scholar
  209. Sharma, P., S. K. Bhattacharya, and B. L. K. Somayajulu. 1983. Beryllium-10 in deep sea sediments and cosmic ray intensity variations. Proc. 18th ‘CRC, Bangalore, India 2:337–340.Google Scholar
  210. Shedrina, Z. G. 1956. Results of the study of foraminifera in the Soviet seas. Voprosy Mikropaleontologii 1:23–36. (In Russian.)Google Scholar
  211. Somayajulu, B. L. K. 1977. Analysis of causes of 10Be variations in deep sea sediments. Geo-chim. Cosmochim. Acta 41:909–913.Google Scholar
  212. Somayajulu, B. L. K., P. Sharma, J. Beer, G. Bonani, H. J. Hofman, E. Morenzoni, M. Nessi, M. Suter, and W. Wolfi. 1984. 10Be annual fallout in rains in India. Nucl. Instrum. Meth. in Phys. Res. B5:398–403.Google Scholar
  213. Somayajulu, B. L. K., P. Sharma, A. S. Naidu, B. Markussen, J. Thiede, G. Bonani, M. Nessi, M. Suter, and W. Wolfli. 1985. 10Be variation in an Arctic sediment core: Implication to climate. International Symposium on Concepts and Techniques of Applied Climatology. Andhara University, Waltair, India, March 18–21.Google Scholar
  214. Somov, M. M. 1955. Observational Data of Scientific Research, Drifting Station of 1590–1951. Vol. 1–3, Vol. 1, Sec. 4 (translated by the American Meteorological Society), p. 9.Google Scholar
  215. Sorokin, Y. I. 1972. Role of biological factors in the sedimentation of iron, manganese, and cobalt and in the formation of nodules. Oceanology 12:1–11.Google Scholar
  216. Spencer, D. W., P. G. Brewer, A. Fleer, S. Honjo, S. A. Krishnaswami, and Y. Nozaki. 1978. Chemical fluxes from a sediment trap in the deep Sargasso Sea. J. Marine Res. 36:493–523.Google Scholar
  217. Steffen, K. 1985. Warm water cells in the North Water, Northern Baffin Bay during winter. J. Geophys. Res. 90:9,129–9,136.Google Scholar
  218. Steuerwald, B. A., and D. L. Clark. 1972. Globigerina pachyderma in Pleistocene and Recent Arctic Ocean sediment. J. Paleontol 46(4):573–580.Google Scholar
  219. Steuerwald, B. A., D. L. Clark, and J. A. Andrew. 1968. Magnetic stratigraphy and faunal patterns in Arctic Ocean sediments. Earth Planet. Sci. Lett. 5(2):79–85.Google Scholar
  220. Swift, J. H., T. Takahashi, and H. D. Livingston. 1983. Contribution of the Greenland and Barents seas to the deep water of the Arctic Ocean. J. Geophys. Res. 88(C10):5,981–5,986.Google Scholar
  221. Tanaka, S., and T. Inoue. 1979. Beryllium-10 dating: 10Be concentration and 10Be/9Be ratios in north Pacific sediment cores up to 2.5 million years в.р. Earth Planet. Sci. Lett. 45:181–187.Google Scholar
  222. Tanaka, S., T. Inoue, and Z. Y. Huang. 1982. 10Be and 10Be/9Be in near Antarctic sediment cores. Geochem. J. 16:321–325.Google Scholar
  223. Tangen, K., L. E. Brand, P. L. Blackwelder, and R. R. Guillard. 1982. Thorascosphaera heimii (Lohmann) Kamptner is a dinophyte: Observations on its morphology and life cycle. Marine Micropaleontol. 7:193–212.Google Scholar
  224. Tappan, H. 1980. The Paleobiology of Plant Protists. Freeman & Co., San Francisco, 1,028p.Google Scholar
  225. Thiel, H. 1978. The faunal environment of manganese nodules and aspects of deep sea time scales. In W. E. Krumbein (ed.), Environmental biogeochemistry and Geomicrobiology,vol. 3. Ann Arbor Science Publ., Inc., Ann Arbor, Mich., pp. 887–896.Google Scholar
  226. Turekian, K. K., J. K. Cochran, S. Krishnaswami, W. A. Lanford, P. D. Parker, and K. Bauer. 1979. The measurement of 10Be in manganese nodules using a tandem Van de Graaf accelerator. Geophys. Res. Lett. 6:417–420.Google Scholar
  227. Valdiya, K. S. 1984. Evolution of the Himalaya. Tectonophysics 105:229–248.Google Scholar
  228. van Donk, J., and G. Mathieu. 1969. Oxygen isotope compositions of foraminifera and water samples from the Arctic Ocean. J. Geophys. Res. 74(13):3,396–3,407.Google Scholar
  229. Vilks, G. 1969. Recent foraminifera in the Canadian Arctic. Micropaleontology 15(1):35–60.Google Scholar
  230. Wangersky, P. J. 1963. Manganese in ecology. In V. Schultz and A. W. Klement (eds.), Radioecology. pp. 499–508.Google Scholar
  231. Weeks, W. F., and W. J. Campbell. 1973. CRREL Research Report 200. U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, N. H.Google Scholar
  232. Weyl, P. K. 1968. The role of the oceans in climatic change: A theory of the Ice Ages. Meteorological Monographs 8(30):37–62.Google Scholar
  233. Williams, D. B. 1971a. The distribution of marine dinoflagellates in relation to physical and chemical conditions. In B. M. Funnel and W. R. Riedel (eds.), The Micropalaeontology of Oceans. Cambridge University Press, Cambridge, Mass., pp. 91–96.Google Scholar
  234. Williams, D. B. 1971b. The occurrence of dinoflagellates in marine sediments. In B. M. Funnel and W. R. Riedel (eds.), The Micropalaeontology of Oceans. Cambridge University Press, Cambridge, pp. 231–244.Google Scholar
  235. Williams, D. F. and N. Healy-WiHiams 1980. Oxygen isotopic-hydrographic relationships among recent planktonic foraminifera from the Indian Ocean. Nature 283(5,750):848–852.Google Scholar
  236. Williams, D. F., W. S. Moore, and R. H. Fillon. 1981. Role of glacial Arctic Ocean ice sheets in Pleistocene oxygen isotope and sea level records. Earth Planet. Sci. Lett. 56:157–166.Google Scholar
  237. Williams, D. F., M. A. Sommer, and M. L. Bender. 1977. Carbon isotopic compositions of Recent planktonic foraminifera of the Indian Ocean. Earth Planet. Sci. Lett. 36:391–403.Google Scholar
  238. Williams, G. L. 1978. Dinoflagellates, acritarchs and tasmanitids. In B. U. Haq and A. Boersma (eds.), Introduction to Marine Micropaleontology. Elsevier, New York and Oxford, pp. 293–326.Google Scholar
  239. Woodring, W. P. 1966. The Panama land bridge as a sea barrier. Am. Philos. Soc. Proc. 110:425–433.Google Scholar
  240. Worsley, T. R., and Y. Herman. 1980. Episodic ice-free Arctic Ocean in Pliocene and Pleistocene time: Calcareous nannofossil evidence. Science 210(4,467):323–325.Google Scholar
  241. Yiou, F., and G.M. Raisbeck. 1972. Half-life of 10Be. Phys. Rev. Lett. 29:372–375.Google Scholar
  242. Zahn, R., B. Markussen, and J. Thiede. 1985. Stable isotope data and depositional environments in the late Quarternary Arctic Ocean. Nature 314(6,010):433–435.Google Scholar
  243. Zelenov, K. K. 1964. Iron and manganese in exhalations from the submarine volcano Bano Vuku (Indonesia). Dokl. Akad. Nauk SSSR, Earth Science Sections 155:91–94.Google Scholar
  244. Zenkevitch, L. A. 1963. Biology of the Seas of the U.S.S.R. (translated by S. Botcharskaya). Interscience Publishers, New York, 955p.Google Scholar

Copyright information

© Van Nostrand Reinhold 1989

Authors and Affiliations

  • Yvonne Herman
  • J. K. Osmond
  • B. L. K. Somayajulu

There are no affiliations available

Personalised recommendations