Parameters of Xenopus rDNA Transcription in Microinjected Oocytes

  • Bärbel Meissner
  • Michael F. Trendelenburg
  • Ansgar Hofmann


Microinjection experiments using cloned Xenopus laevis rDNA have resulted in a detailed analysis of transcriptional control elements of the rDNA repeat (Busby and Reeder, 1983; Labhart and Reeder, 1984; De Winter and Moss, 1986). However, to facilitate detection of X. laevis rDNA transcripts most microinjection experiments were performed in a heterologous system: X. laevis rDNA clones were injected into X. borealis oocytes. It is clear that this assay has to cope with the phenomenon of nucleolar dominance of X. laevis transcripts over X. borealis transcripts (Reeder and Roan, 1984). Another line of evidence from oocyte microinjection experiments indicated, that oocyte batches from different females are likely to contain different amounts of rDNA specific transcription factors (Trendelenburg et al., 1978; Sollner-Webb and McKnight, 1982; McStay and Reeder, 1986). From EM-observations of injected rDNA templates it is clear that transcription factors specific for RNA polymerase I compete with those for polII on individual injected templates (Trendelenburg and Gurdon, 1978; Trendelenburg and Puvion-Dutilleul, 1987). In order to allow quantitation of some essential parameters influencing rDNA transcription we used a homologous experimental system: we injected a X. laevis rDNA construct of which transcripts could be discerned from endogenous rDNA transcripts into X. laevis oocytes and monitored the amount of transcript produced by the S1 nuclease technique.


Xenopus Laevis Xenopus Oocyte Xenopus Laevis Oocyte rDNA Repeat Oocyte Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boseley P., Moss T., Mächler M., Portmann R. and Birnstiel M. L. (1979), Sequence organization of the nontranscribed spacer of Xenopus laevis ribosomal DNA. Cell 17:19.CrossRefGoogle Scholar
  2. Busby S. J. and Reeder R. H. (1983), Spacer sequences regulate transcription of ribosomal gene plasmids injected into Xenopus embryos. Cell 34:989.CrossRefGoogle Scholar
  3. DeWinter R. F. and Moss T. (1986), Spacer promoters are essential for efficient enhancement of Xenopus laevis ribosomal transcription. Cell 44:313.CrossRefGoogle Scholar
  4. Gurdon J. B. and Wickens M. P. (1983), The use of Xenopus oocytes for the expression of cloned genes. Methods in Enzymology 101:370.CrossRefGoogle Scholar
  5. Hadjiolov A. A.(1985), The nucleolus and ribosome biogenesis. Cell Biology Monographs, Vol 12, Springer-Verlag, Wien.CrossRefGoogle Scholar
  6. Hofmann A., Laier A. and Trendelenburg M. F. (1985), Geninjektion und Transkriptanalyse in der Xenopus Oozyte, in: Molekular- und Zellbioogie - Aktuelle Themen (Blin, N., Trendelenburg, M. F. and Schmidt, E. R., eds.) pp. 144–158, Springer-Verlag, Berlin.Google Scholar
  7. Korn L. J., Gurdon J. B. and Price J. (1982), Oocyte extracts reactive developmentally inert Xenopus 5S genes in somatic nuclei. Nature 300:354.CrossRefGoogle Scholar
  8. Labhart P. and Reeder R. H. (1984), Enhancer-like properties of the 60/8lbp elements in the ribosomal gene spacer of Xenopus laevis. Cell 37:285.CrossRefGoogle Scholar
  9. Labhart P. and Reeder R. H. (1986), Characterization of three sites of RNA 3’-end formation in the Xenopus laevis ribosomal gene spacer. Cell 45:431.CrossRefGoogle Scholar
  10. McStay B. and Reeder R. H. (1986), A termination site for Xenopus RNA polymerase I also acts as an element of an adjacent promoter. Cell 47:913.CrossRefGoogle Scholar
  11. Michaeli T. and Prives C. (1987), pBR322 DNA inhibits simian virus 40 gene expression in Xenopus laevis oocytes. Nucl. Acids Res. 4:1579.CrossRefGoogle Scholar
  12. Moss T. (1982), Transcription of cloned Xenopus laevis ribosomal DNA microinjected into Xenopus oocytes and the identification of a RNA polymerase I promoter. Cell 30:635.CrossRefGoogle Scholar
  13. Reeder R. H. and Roan J. G. (1984), The mechanism of nucleolar dominance in Xenopus hybrids. Cell 38:39.CrossRefGoogle Scholar
  14. Sassone-Corsi P., Cordon J., Kedinger C. and Chambon P. (1981), Promotion of the specific in vitro transcription by excised ‘TATA’-box sequences inserted in a foreign nucleotide environment. Nucl. Acids Res. 9:3941.PubMedCrossRefGoogle Scholar
  15. Sollner-Webb B. and McKnight S. L. (1982), Accurate transcription of cloned Xenopus rRNA genes by RNA polymerase I: demonstration by nuclease S mapping. Nucl. Acids Res. 10:3391.PubMedCrossRefGoogle Scholar
  16. Trendelenburg M. F. and Gurdon J. B. (1978), Transcription of cloned Xenopus ribosomal genes visualized after injection into oocyte nuclei. Nature 276:292.CrossRefGoogle Scholar
  17. Trendelenburg M. F., Zentgraf H., Franke W. W. and Gurdon J. B. (1978), Transcription patterns of amplified Dytiscus genes coding for rRNA after injection into Xenopus oocyte nuclei. Proc. Natl. Acad. Sci. USA 75:3791.CrossRefGoogle Scholar
  18. Trendelenburg M. F. and Puvion-Dutilleul F. (1987), Visualizing active genes, in: Electron Microscopy in Molecular Biology (Sommerville J. and Scheer U., eds.). pp. 101–146. IRL Press, Oxford, U.K.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Bärbel Meissner
    • 1
  • Michael F. Trendelenburg
    • 1
  • Ansgar Hofmann
    • 1
  1. 1.Institute of Experimental PathologyGerman Cancer Research CenterHeidelbergFederal Republic of Germany

Personalised recommendations