Skip to main content

Primary Structure and Conformation of Clostridium Botulinum Neurotoxin

  • Chapter
Microbial Toxins in Foods and Feeds

Abstract

A set of neurotoxic proteins synthesized by certain strains of Clostridium botulinum, C. butyricum, C. tetani and presumably also by C. barati, are nearly identical in macro structure. Some aspects of their fine structures and pharmacological action are strikingly similar. These proteins, one called tetanus neurotoxin and the rest botulinum neurotoxins (NT), produce in their target nerve cells similar intracellular biochemical lesions; blockage of normal release of neurotransmitters, albeit inhibitory and excitatory. Diversity in the primary, secondary and tertiary structures among these proteins makes them antigenically distinguishable and endows them with the specificity to recognize and bind to the “acceptors/receptors” present on the susceptible nerve cells. This article considers the structural aspects of this generalized theme. The structural features of botulinum NT are presented first. The temptation to keep tetanus NT in the same focus as botulinum NT could not be overcome even twelve years after pointing out for the first time the similarities between botulinum and tetanus neurotoxins.11

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandyopadhyay S, Clark AW, DasGupta BR, Sathyamoorthy V, 1987, Role of the heavy and light chains of botulinum neurotoxin in neuromuscular paralysis, J Biol Chem., 262:2660–2663.

    CAS  Google Scholar 

  2. Beers WH, Reich E, 1969, Isolation and characterization of Clostridium botulinum type B toxin, J Biol Chem., 244:4473–4479.

    CAS  Google Scholar 

  3. Blaustein RO, Germann WJ, Finkelstein A, DasGupta BR, 1988, The N- terminal half of the heavy chain of botulinum type A neurotoxin forms channels in planar phospholipid bilayers, FEBS Letters., 226:115–120.

    Article  Google Scholar 

  4. Blaustein RO, Hoch DH, DasGupta BR, 1988, Channels formed by botulinum type E neurotoxin in planar lipid bilayers, FASEB J., A1750, (abstract).

    Google Scholar 

  5. DasGupta BR, 1981, Structure and structure function relation of botulinum neurotoxins, In “Biomedical Aspects of Botulism,” Lewis, GE, ed. Academic Press, New York.

    Google Scholar 

  6. DasGupta BR, Datta A, 1988, Botulinum neurotoxin type B (strain 657); partial sequence and similarity with tetanus toxin, Biochimie, 70:811–817.

    Article  CAS  Google Scholar 

  7. DasGupta BR, Foley J, Wadsworth C, 1988, Botulinum neurotoxin type A: partial sequence of L chain and its fragments, FASEB J., A1750, (abstract).

    Google Scholar 

  8. DasGupta BR, Rasmussen S, 1983, Purification and amino acid composition of type E botulinum neurotoxin, Toxicon., 21:535–545.

    Article  CAS  Google Scholar 

  9. DasGupta BR, Rasmussen S, 1983, Amino acid composition of Clostridium botulinum type F neurotoxin, Toxicon., 21:566–569.

    Article  CAS  Google Scholar 

  10. DasGupta BR, Sathyamoorthy V, 1984, Purification and amino acid composition of type A botulinum neurotoxin, Toxicon., 22:415–424.

    Article  CAS  Google Scholar 

  11. DasGupta BR, Sugiyama H, 1977, Biochemistry and pharmacology of botulinum and tetanus neurotoxins, In “Perspectives in Toxinology”, Bernheiraer AW, ed., John Wiley & Sons, New York.

    Google Scholar 

  12. DasGupta BR, Sugiyama H, 1978, Limited proteolysis of Clostridium botulinum types A and B neurotoxin, Am Soc Microbiol., (abstract), p. 25.

    Google Scholar 

  13. DasGupta BR, Woody MA, 1984, Amino acid composition of Clostridium botulinum type B neurotoxin, Toxicon., 22:312–315.

    Article  CAS  Google Scholar 

  14. Datta A, DasGupta BR, 1988, Circular dichroic and fluorescence spectroscopic study of the conformation of botulinum neurotoxin types A and E, Mol Cell Biochem., 79:153–159.

    Article  CAS  Google Scholar 

  15. Datta A, DasGupta BR, 1988, Botulinum neurotoxin types A, B and E; pH induced difference spectra, Mol Cell Biochem., 81:187–194.

    Article  CAS  Google Scholar 

  16. Donovan JJ, Middlebrook JL, 1986, Ion-conducting channels produced by botulinum toxin in planar lipid membranes, Biochemistry, 25:2872–2876.

    Article  CAS  Google Scholar 

  17. Eisel U, Jarausch W, Goretzki K, Henschen A, Engels J, Weller U, Hudel M, Habermann E, Niemann H, 1986, Tetanus toxin: primary structure, expression in E. coli, and homology with botulinum toxins, EMBO Journal, 5:2495–2502.

    CAS  Google Scholar 

  18. Fairweather NF, Lyness VA, 1986, The complete nucleotide sequence of tetanus toxin, Nucleic Acids Res., 14:7809–7812.

    Article  CAS  Google Scholar 

  19. Gimenez DF, 1984, Clostridium botulinum subtype Ba, Zbl Bakt Hyg A, 257: 68–72.

    CAS  Google Scholar 

  20. Gimenez J, Sugiyama H, 1988, Comparison of toxins of Clostridium butyricum and Clostridium botulinum type E, Infect Immun., 56:926–929.

    CAS  Google Scholar 

  21. Gimenez J, Foley J, DasGupta BR, 1988, Neurotoxin type E from Clostridium botulinum and C. butyricum; partial sequence and comparison, FASEB J., A1750, (abstract).

    Google Scholar 

  22. Hall JD, McCroskey LM, Pincomb BJ, Hatheway CL, 1985, Isolation of an organism resembling Clostridium barati which produces type F botulinal toxin from an infant with botulism, J Clin Microbiol., 21:654–655.

    CAS  Google Scholar 

  23. Hoch DH, Romeromira M, Ehrlich BE, Finkelstein A, DasGupta BR, Simpson LL, 1985, Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes, Proc Nat Acad Sci (USA), 82:1692–1696.

    Article  CAS  Google Scholar 

  24. Kaiser ET, 1987, Design principles in the construction of the biologically active peptides, Trends in Biochem Sci., 12:305–309.

    Article  CAS  Google Scholar 

  25. Kaiser ET, Kezdy FJ, 1984, Amphiphilic secondary structure: design of peptide hormones, Science, 223:249–255.

    Article  CAS  Google Scholar 

  26. Kaiser ET, Kezdy FJ, 1987, Peptides with affinity for membranes, Ann Re. Biophys Chem., 16:561–581.

    Article  CAS  Google Scholar 

  27. Kozaki S, Miyazaki S, Sakaguchi G, 1977, Development of antitoxin wltli each of two complementary fragments of Clostridium botulinum type B derivative toxin, Infect Immun., 18:761–766.

    CAS  Google Scholar 

  28. Kozaki S, Togashi S, Sakaguchi G, 1981, Separation of Clostridium botulinum type A derivative toxin into two fragments, Jpn J Med Sci., 34: 61–68.

    CAS  Google Scholar 

  29. Matsuda M, Yoneda M, 1974, Dissociation of tetanus neurotoxin into two polypeptide fragments, Biochem Biophys Res Commun., 57:1257–1262.

    Article  CAS  Google Scholar 

  30. McCroskey LM, Hatheway CL, Fenicia L, Pasolini B, Aurel P, 1986, Characterization of an organism that produces type E botulinal toxin but which resembles Clostridium butyricum from the feces of an infant with type E botulism, J Clin Microbiol., 23:201–202.

    CAS  Google Scholar 

  31. Miller IR, 1987, Lipid bilayers and proteins: a fluctuating interaction?, Trends in Biochem Sci., 12:461–462.

    Article  CAS  Google Scholar 

  32. Montecucco C, 1986, How do tetanus and botulinum toxins bind to neuronal membranes?, Trends in Biochem Sci., 11:314–317.

    Article  CAS  Google Scholar 

  33. Montecucco C, 1987, Diphtheria toxin membrane translocation: an open question, Trends in Biochem Sci., 12:181–182.

    Article  Google Scholar 

  34. Montecucco C, Schiavo G, 1986, Tetanus toxin is labeled with photoacti- vatable phospholipids at low pH., Biochemistry, 25:919–924.

    Article  CAS  Google Scholar 

  35. Montecucco C, Giao Z, Boquet P, Schiavo G, Bauerlein E, DasGupta BR, 1988, Interaction of botulinum and tetanus toxins with the lipid bilayer surface, Biochem J., 251:379–383.

    CAS  Google Scholar 

  36. Montecucco C, Schiavo G, DasGupta BR, 1989, Effect of pH on the interaction of botulinum neurotoxins A, B and E with liposomes, Biochem J., 259:47–53.

    CAS  Google Scholar 

  37. Moore S, 1972, The precision and sensitivity of amino acid analysis, In “Proceedings of the Third American Peptide Symposium,” J. Meinhofer, ed., Ann Arbor Science Publishers, Ann Arbor, MI.

    Google Scholar 

  38. Murayama S, Syuto B, Oguma K, Iida H, Kubo S, 1984, Comparison of Clostridium botulinum toxins type D and C, in molecular property, antigenicity and binding ability to rat-brain synaptosomes, Eur J Biochem., 142:487–492.

    Article  CAS  Google Scholar 

  39. Poulain B, Tauc L, Maisey EA, Wadsworth JEF, Mohan PM, Dolly JO, 1988, Neurotransmitter release is blocked intracellularly by botulinum neurotoxin, and this requires uptake of both toxin polypeptides by a process mediated by the large chain, Proc Natl Acad Sci (USA), 85:4090–4094.

    Article  CAS  Google Scholar 

  40. Robinson JP, Hash JH, 1982, A review of the molecular structure of tetanus toxin, Mol Cell Biochem., 48:33–44.

    Article  CAS  Google Scholar 

  41. Rob inson JP, Chiu W, DasGupta BR, 1988, Two-dimensional crystals of botulinum toxin type A, FASEB J., A1750 (Abstract).

    Google Scholar 

  42. Robinson JP, Holladay LA, Hash JH, Puett D, 1982, Conformational and molecular weight studies of tetanus toxin and its major peptides, J Biol Chem., 257:407–411.

    CAS  Google Scholar 

  43. Sathyamoorthy V, DasGupta BR, 1985, Partial amino acid sequences of the heavy and light chains of botulinum neurotoxin type E, Biochem Biophys Res Commun., 127:768–772.

    Article  CAS  Google Scholar 

  44. Sathyamoorthy V, DasGupta BR, 1985, Separation, purification, partial characterization and comparison of the heavy and light chains of botulinum neurotoxin types A, B and E, J Biol Chem., 260:10461–10466.

    CAS  Google Scholar 

  45. Sathyamoorthy V, DasGupta BR, Niece RL, 1986, Botulinum neurotoxin type A, cleavage and partial sequence of the H chain, Fed Proceed., 45:1793 (abstract).

    Google Scholar 

  46. Sathyamoorthy V, DasGupta BR, Foley J, Niece RL, 1988, Botulinum neurotoxin type A; cleavage of the heavy and light chain into two halves and their partial sequences, Arch Biochem Biophys., 266:142–151.

    Article  CAS  Google Scholar 

  47. Schiffer M, Edmundson AB, 1967, Use of helical wheels to represent the structures of proteins and to identify segments with helical potential, Biophys J., 7:121–135.

    Article  CAS  Google Scholar 

  48. Schmidt JJ, Sathyamoorthy V, DasGupta BR, 1984, Partial sequence of the heavy and light chains of botulinum neurotoxin type A, Biochem Biophys Res Commun., 119:900–904.

    Article  CAS  Google Scholar 

  49. Schmidt JJ, Sathyamoorthy V, DasGupta BR, 1985, Partial amino acid sequences of botulinum neurotoxins types B and E, Arch Biochem Biophys 238:544–548.

    Article  CAS  Google Scholar 

  50. Shone CC, Hambleton P, Melling J, 1985, Inactivation of Clostridium botulinum type A neurotoxin by trypsin and purification of two tryptic fragments, Eur J Biochem., 151:75–82.

    Article  CAS  Google Scholar 

  51. Shone CC, Hambleton P, Melling J, 1987, A 50-kDa fragment from the NH2-terminus of the heavy subunit of Clostridium botulinum type A neurotoxin forms channels in lipid vesicles, Eur J Biochem., 167:175–180.

    Article  CAS  Google Scholar 

  52. Singh BR, DasGupta BR, 1989, Structure of heavy and light chain subunits of type A botulinum neurotoxin analyzed by circular dichroism and fluorescence measurements, Mol Cell Biochem., 85:67–73.

    Article  CAS  Google Scholar 

  53. Singh BR, DasGupta BR, 1989, Molecular topography and secondary structure comparisons of botulinum neurotoxin types A, B and E, Mol Cell Biochem., 86: 87–95.

    CAS  Google Scholar 

  54. Syuto B, Kubo S, 1981, Separation and characterization of heavy and light chains from Clostridium botulinum type C toxin and their recon- stitution, J Biol Chem., 256:3712–3717.

    CAS  Google Scholar 

  55. Syuto B, Kubo S, 1982, Clostridium botulinum type C toxin, Mol Cell Biochem., 48:25–32.

    Article  CAS  Google Scholar 

  56. Terajima J, Syuto B, Ochanda JP, Kubo S, 1985, Purification and Characterization of neurotoxin produced by Clostridium botulinum type C 6813, Infect Immun., 48:312–317.

    CAS  Google Scholar 

  57. Tsuzuki K, Yokosawa N, Syuto B, Ohishi I, Fujii N, Kimura K, Oguma K, 1988, Establishment of a monoclonal antibody recognizing an antigenic site common to Clostridium botulinum Type B, C^, D, and E toxins and tetanus toxin, Infect Immun., 56:898–902.

    CAS  Google Scholar 

  58. Woody MA, DasGupta BR, 1988, C-terminal residues of botulinum neurotoxin types A, B and E, Am Soc Microbiol., p. 40 (abstract).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

DasGupta, B.R. (1990). Primary Structure and Conformation of Clostridium Botulinum Neurotoxin. In: Pohland, A.E., et al. Microbial Toxins in Foods and Feeds. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0663-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0663-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7916-7

  • Online ISBN: 978-1-4613-0663-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics