Three-Dimensional Clustering on Surfaces: Overlayers on Si

  • M. Zinke-Allmang
  • L. C. Feldman
  • S. Nakahara
Part of the NATO ASI Series book series (NSSB, volume 239)


Heteroepitaxy, the formation of crystalline, layered structures of different materials, is the driving force for a large part of current solid state science. Most heteroepitaxial applications require and assume a uniform two-dimensional planar structure, based on the simplest film growth concepts. Nevertheless, the propensity for three-dimensional nucleation is a strong element in film formation. In this paper we describe our recent work in studies of clustering for overlayers on Si. Our studies consider the set of adsorbates, Ge, Sn and Ga on substrates of Si, GaAs and As terminated Si surfaces. The use of the As terminated surface permits an interesting transition between the two primary semiconductors. We show that the kinetics of cluster growth is well described by ripening processes, which can, in turn, be thought of as special cases of scaling laws predicted by self-similarity concepts.


Surface Diffusion Fourth Power Surface Barrier Cluster Surface Cluster Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. P. Pearsall, J. Bevk, L. C. Feldman, J. M. Bonar, J. P. Mannaerts and A. Ourmazd, Phys. Rev. Lett. 58, 729 (1987).ADSCrossRefGoogle Scholar
  2. 2.
    M. H. Grabow and G. H. Gilmer, in Semiconductor-based Heterostructures: Interfacial Structure and Stability. L. Green, J. E. E. Baglin, G. Y. Chin, H. W. Deckman, W. Mayo and D. Narasinham eds., (Metallurgical Society, Warrendale, PA, 1986), p. 3.Google Scholar
  3. 3.
    L. C. Feldman, J. Bevk, B. A. Davidson, H.-J. Gossmann, A. Ourmazd, T. P. Pearsall and M. Zinke-Allmang, Mat. Res. Soc. Symp. Proc. 102, 405 (1988).CrossRefGoogle Scholar
  4. 4.
    M. Zinke-Allmang, L. C. Feldman and S. Nakahara, Appl. Phys. Lett. 51 975 (1987); M. Zinke-Allmang, L. C. Feldman, S. Nakahara and B. A. Davidson, Phys. Rev. B39, 7848 (1989).ADSCrossRefGoogle Scholar
  5. 5.
    J. H. van der Merwe, in Single Crystal Films. M. H. Francombe and H. Sato eds., (Pergamon, Oxford, 1964), p. 139.Google Scholar
  6. 6.
    J. W. Mathews, in Epitaxial Growth. Part 2, J. W. Mathews ed., (Academic Press, New York, 1975), p. 559.Google Scholar
  7. 7.
    J. C. Bean, T. T. Sheng, L. C. Feldman, A. T. Fiory and R. T. Lynch, Appl. Phys. Lett. 44, 102 (1984).ADSCrossRefGoogle Scholar
  8. 8.
    K. Binder and D. Stauffer, Adv. Phys. 25, 343 (1976).ADSCrossRefGoogle Scholar
  9. 9.
    R. Bruinsma and A. Zangwill, Europhys. Lett. 4, 729 (1987).ADSCrossRefGoogle Scholar
  10. 10.
    M. von Smoluchowski, Z. Phys. Chem. 92, 129 (1918); see also J. T. G. Overbeek, in Colloid Science, vol. 1, H. R. Kruyt ed., (Elsevier, London, 1952), p. 278.Google Scholar
  11. 11.
    I. M. Lifshitz and V. V. Slyozov, Sov. Phys. JETP 35, 331 (1959); J. Phys. Chem. Solids 19, 35 (1961).Google Scholar
  12. 12.
    C. Wagner, Z. Elektrochem. 65, 581 (1961).Google Scholar
  13. 13.
    B. K. Chakraverty, J. Phys. Chem. Solids 28, 2401 (1967).ADSCrossRefGoogle Scholar
  14. 14.
    W. D. Kingery, H. K. Bowen and D. R. Uhlmann, Introduction to Ceramics (Wiley, New York), p. 185.Google Scholar
  15. 15.
    C. S. Lialikov, V. N. Piscounova, J. P. Chipilov and C. V. Cerdycev, Proc. 9th Int. Conf. on Photographic Science and Applications (Paris, 1935), p. 277.Google Scholar
  16. 16.
    J. Crank, in The Mathematics of Diffusion (Clarendon, Oxford, 1975).Google Scholar
  17. 17.
    W. W. Mullins, J. Appl. Phys. 59, 1341 (1986); W. W. Mullins and J. Vinals, Acta Metall. 37, 991 (1989).ADSCrossRefGoogle Scholar
  18. 18.
    J. D. Gunton, in Kinetics of Interface Reactions. Vol. 8, M. Grunze and H. J. Kreuzer eds., (Springer Series in Surf. Sci., Berlin, 1987), p. 238.Google Scholar
  19. 19.
    Y. Enomoto, M. Tokuyama and K. Kawasaki, Acta Metall. 34, 2119 (1986), and references herein.CrossRefGoogle Scholar
  20. 20.
    D. Huse, Phys. Rev. B34 7845 (1986).ADSGoogle Scholar
  21. 21.
    E. Bauer and H. Poppa, Thin Solid Films 12 167 (1972).ADSCrossRefGoogle Scholar
  22. 22.
    L. C. Feldman and J. W. Mayer, in Fundamentals of Surface and Thin Film Analysis (Elsevier, New York, 1986).Google Scholar
  23. 23.
    J. A. Venables, J. Vac. Sci. Technol. B4, 870 (1986).Google Scholar
  24. 24.
    J. A. Kerr and A. F. Trotman-Dickenson, in Handbook of Chemistry and Physics. 57th Edition, R. C. Weast ed., (CRC Press, Cleveland, 1976), p. F–219.Google Scholar
  25. 25.
    M. A. Olmstead, R. D. Bringans, R. I. G. Uhrberg and R. Z. Bachrach, Phys. Rev. B34, 6041 (1986); R. I. G. Uhrberg, R. D. Bringans, M. A. Olmstead, R. Z. Bachrach and J. E. Northrup, Phys. Rev. B35 3945 (1987).ADSGoogle Scholar
  26. 26.
    M. Zinke-Allmang, L. C. Feldman, J. R. Patel and J. C. Tully, Surf. Sci. 197, 1 (1988).ADSCrossRefGoogle Scholar
  27. 27.
    R. L. Headrick and W. R. Graham, Phys. Rev. B37 1051 (1988); J. Vac. Sci. Technol. A6 637 (1988); M. Copel and R. M. Tromp, Phys. Rev. B37 2766 (1988).ADSGoogle Scholar
  28. 28.
    K. Takayanagi, Y. Tanishiro, M. Takahashi and S. Takahashi, J. Vac. Sci. Technol. A3, 1502 (1985).ADSGoogle Scholar
  29. 29.
    J. R. Patel, J. A. Golovchenko, P. E. Freeland and H.-J. Gossmann, Phys. Rev. B36, 7715 (1987).ADSGoogle Scholar
  30. 30.
    M. Zinke-Allmang, L. C. Feldman and S. Nakahara, Appl. Phys. Lett. 52, 144 (1988).ADSCrossRefGoogle Scholar
  31. 31.
    L. E. Murr in Interfacial Phenomena in Metals and Alloys (Addison-Wesley, Reading MA, 1975), p. 101ff.Google Scholar
  32. 32.
    M. Zinke-Allmang, H.-J. Gossmann, L. C. Feldman and G. J. Fisanick, Mat. Res. Soc. Symp. Proc. 77, 703 (1987).CrossRefGoogle Scholar
  33. 33.
    M. Zinke-Allmang, L. C. Feldman and S. Nakahara, J. Vac. Sci. Technol. B6, 1137 (1988).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • M. Zinke-Allmang
    • 1
  • L. C. Feldman
    • 2
  • S. Nakahara
    • 2
  1. 1.Institute of Thin Film and Ion TechnologyKFA JülichJülichFederal Republic of Germany
  2. 2.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations