Growth Kinetics on Vicinal (001) Surfaces: The Solid-on-Solid Model of Molecular-Beam Epitaxy

  • D. D. Vvedensky
  • S. Clarke
  • K. J. Hugill
  • A. K. Myers-Beaghton
  • M. R. Wilby
Part of the NATO ASI Series book series (NSSB, volume 239)


Growth kinetics during molecular-beam epitaxy (MBE) on vicinal surfaces are simulated with a kinetic solid-on-solid model. Comparison is made between the simulated step-density and the specular intensity of reflection high-energy electron-diffraction (RHEED) measurements. In addition to identifying the kinetic mechanisms giving rise to observed phenomena, this similarity provides considerable insight into the sensitivity of specular RHEED to specific features of morphological sensitivity involving two-point surface correlations. Applications of the model encompass both III-V and group-IV semiconductors. Examples for GaAs(001) MBE include: (i) a discussion of growth modes on vicinal surfaces as a function of substrate temperature, with (ii) a direct determination of model parameters from a comparison of step-density and RHEED evolutions; and (iii) the fabrication of quantum wires. For growth on Si(001) surfaces, we discuss (iv) the role of monatomic and biatomic steps and the dimer reconstruction in determining the mode of growth, and (v) the coverage of 2 × 1 and 1 × 2 domains during growth and after recovery.


Step Edge Increase Substrate Temperature Vicinal Surface Step Density Monatomic Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. L. Hill, J. Chem. Phys. 15, 761 (1947).ADSCrossRefGoogle Scholar
  2. 2.
    D. E. Tempkin, Sov. Phys. Crystall. 14, 344 (1969).Google Scholar
  3. 3.
    J. D. Weeks and G. H. Gilmer, Adv. Chem. Phys. 40, 157 (1979).CrossRefGoogle Scholar
  4. 4.
    B. A. Joyce, Rep. Prog. Phys. 48, 1637 (1985).ADSCrossRefGoogle Scholar
  5. 5.
    J. H. Neave, B. A. Joyce, P. J. Dobson, and N. Norton, Appl. Phys. 31, 1 (1983).Google Scholar
  6. 6.
    J. M. Van Hove, C. S. Lent, P. R. Pukite, and P. I. Cohen, J. Vac. Sci. Technol. B1, 741 (1983).Google Scholar
  7. 7.
    J. H. Neave, P. J. Dobson, B. A. Joyce, and J. Zhang, Appl. Phys. Lett. 47, 100 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    J. Singh, S. Dudley, and K. K. Bajaj, J. Vac. Sci. Technol. B4, 878 (1986).Google Scholar
  9. 9.
    M. Thomsen and A. Madhukar, J. Crystal Growth 80, 275 (1987).ADSCrossRefGoogle Scholar
  10. 10.
    S. A. Barnett and A. Rockett, Surf. Sci. 191, 133 (1988).ADSCrossRefGoogle Scholar
  11. 11.
    S. Clarke and D. D. Vvedensky, J. Appl. Phys. 63, 2272 (1988).ADSCrossRefGoogle Scholar
  12. 12.
    S. Clarke and D. D. Vvedensky, Phys. Rev. Lett. 58, 2235 (1987).ADSCrossRefGoogle Scholar
  13. 13.
    S. Clarke and D. D. Vvedensky, Phys. Rev. B36, 9312 (1987).ADSGoogle Scholar
  14. 14.
    S. Clarke and D. D. Vvedensky, Appl. Phys. Lett. 51, 340 (1987).ADSCrossRefGoogle Scholar
  15. 15.
    S. Clarke, D. D. Vvedensky, and M. W. Ricketts, J. Crystal Growth 95., 28 (1989).ADSCrossRefGoogle Scholar
  16. 16.
    S. V. Ghaisas and A. Madhukar, J. Appl. Phys. 65, 3872 (1989).ADSCrossRefGoogle Scholar
  17. 17.
    A. K. Myers-Beaghton and D. D. Vvedensky, Surf. Sci. (in press).Google Scholar
  18. 18.
    P. R. Pukite, G. S. Petrich, S. Batra and P. I. Cohen, J. Cryst. Growth 95, 269 (1988).CrossRefGoogle Scholar
  19. 19.
    K. Ohta, T. Kojima, and T. Nakagawa, J. Cryst. Growth 95, 71 (1988).CrossRefGoogle Scholar
  20. 20.
    T. Shitara and T. Nishinaga, Jpn. J. Appl. Phys. 28, 1212 (1989).ADSCrossRefGoogle Scholar
  21. 21.
    T. Shitara, D. D. Vvedensky, S. Clarke, and B. A. Joyce, to be published.Google Scholar
  22. 22.
    D. D. Vvedensky and S. Clarke, Surf. Sci. (in press).Google Scholar
  23. 23.
    J. M. Gaines, P. M. Petroff, H. Kroemer, R. J. Simes, R. S. Geels, and J. H. English, J. Vac. Sci. Technol. B 6, 1378 (1988).ADSCrossRefGoogle Scholar
  24. 24.
    M. Tsuchiya, J. M. Gaines, R. H. Yan, R. J. Simes, P. O. Holtz, L. A. Coldren, and P. M. Petroff, Phys. Rev. Lett. 62, 466 (1989).ADSCrossRefGoogle Scholar
  25. 25.
    M. Tanaka and H. Sakaki, Jpn. J. Appl. Phys. 27, L2025 (1988).ADSCrossRefGoogle Scholar
  26. 26.
    K. J. Hugill, S. Clarke, D. D. Vvedensky, and B. A. Joyce, J. Appl. Phys. 66, 3415 (1989).ADSCrossRefGoogle Scholar
  27. 27.
    T. Sakamoto, N. J. Kawai, T. Nakagawa, K. Ohta, and T. Kojima, Appl. Phys. Lett. 47., 617 (1985).ADSCrossRefGoogle Scholar
  28. 28.
    T. Sakamoto and G. Hashiguchi, Jpn. J. Appl. Phys. 25, L78 (1986).ADSCrossRefGoogle Scholar
  29. 29.
    J. Aarts, W. M. Gerits, and P. K. Larsen, Appl. Phys. Lett. 48, 931 (1986).ADSCrossRefGoogle Scholar
  30. 30.
    D. J. Chadi, Phys. Rev. Lett. 59, 1691 (1987).ADSCrossRefGoogle Scholar
  31. 31.
    S. Clarke, M. R. Wilby, D.D. Vvedensky, and T. Kawamura, Phys Rev. B40, 1369 (1989).ADSGoogle Scholar
  32. 32.
    T. Sakamoto, T. Kawamura, and G. Hashiguchi, Appl. Phys. Lett. 48, 1612 (1986).ADSCrossRefGoogle Scholar
  33. 33.
    E. J. van Loenen, A. J. Hoeven, D. Bijkkamp, J. M. Lenssinck, H. Elswijk, and J. Dieleman, this volume.Google Scholar
  34. 34.
    K. Sakamoto, T. Sakamoto, K. Miki, S. Nagao, G. Hashiguchi, K. Kuniyoshi, and N. Takahashi J. Electrochem. Soc. (in press).Google Scholar
  35. 35.
    E. J. Van Loenen, A. J. Hoeven, D. Dijkkamp, and H. Lenssinck. Paper presented at the 3rd International Symposium on Silicon Molecular Beam Epitaxy, Strasbourg, France on 30th May 1989; and E. J. van Loenen, private communication.Google Scholar
  36. 36.
    M. R. Wilby, S. Clarke, D. D. Vvedensky, T. Kawamura, K. Miki, and H. Tokumoto, to be published.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • D. D. Vvedensky
    • 1
  • S. Clarke
    • 1
  • K. J. Hugill
    • 1
  • A. K. Myers-Beaghton
    • 1
  • M. R. Wilby
    • 1
  1. 1.The Blackett Laboratory and Indisciplinary Research Centre for Semiconductor MaterialsImperial CollegeLondonUK

Personalised recommendations