From Thermodynamics to Quantum Wires: A Review of Reflection High-Energy Electron Diffraction

  • P. I. Cohen
  • G. S. Petrich
  • A. M. Dabiran
  • P. R. Pukite
Part of the NATO ASI Series book series (NSSB, volume 239)


The built-in staircase of steps on a vicinal surface has been used by Petroff and coworkers as a template for the growth of quantum wires. The limits of this technique depend upon the degree to which the steps are ordered before and during growth and on the extent of step meandering. Here we review those aspects of reflection high energy electron diffraction (RHEED) that allow characterization of these staircase steps during growth by molecular beam epitaxy. First we describe Henzler’s methods of measuring the surface step distribution. We use Lagally’s criterion to give an operational measurement of the transfer width of a RHEED instrument. We show that in the direction of the incident beam, coherent diffraction over distances as large as 8000 A is detected. Simple one-dimensional models of terrace length disorder are considered to show the sensitivity of the measured pattern. The appropriate correlation functions of surface disorder are described. By directing the beam perpendicular and parallel to the staircase, we also examine the kink density. Differences that depend upon the two types of step termination possible on a zincblende structure are observed. Recent work of Bartelt and Einstein on scaling is described. The main difficulties are that to apply equilibrium arguments, sufficient temperature and flux stability is required to balance growth and sublimation. A second difficulty is that trace impurities can pin steps during growth.


Diffract Intensity Quantum Wire Step Edge Reflection High Energy Electron Diffraction Reflection High Energy Electron Diffraction Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. M. Petroff, A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 45, 620 (1984); M. Tsuchiya, J. M. Gaines, R. H. Yan, R. J. Simes, P. O. Holtz, L. A. Coldren, and P. M. Petroff, J. Vac. Sci. Technol. B7, 315 (1989).ADSCrossRefGoogle Scholar
  2. 2.
    T. Fukui and H. Saito, Appl. Phys. Lett. 50, 824 (1987).ADSCrossRefGoogle Scholar
  3. 3.
    J. M. Van Hove, P. R. Pukite, and P. I. Cohen, J. Vac. Sci. Technol. B3, 563 (1985).Google Scholar
  4. 4.
    P. R. Pukite, J. M. Van Hove, and P. I. Cohen, J. Vac. Sci. Technol. B2, 243 (1984).Google Scholar
  5. 5.
    M. Henzler, Advances in Solid State Physics 19, 193 (1979).CrossRefGoogle Scholar
  6. 6.
    M. B. Webb and M. G. Lagally, Solid State Physics 28, 301 (1973).CrossRefGoogle Scholar
  7. 7.
    P. R. Pukite, C. S. Lent, and P. I. Cohen, Surf. Sci. 161, 39 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    T.-M. Lu and M. G. Lagally, Surf. Sci. 120, 47 (1982).ADSCrossRefGoogle Scholar
  9. 9.
    T.-M. Lu and M. G. Lagally, Surf. Sci. 99, 695 (1980).ADSCrossRefGoogle Scholar
  10. 10.
    J. M. Van Hove, P. R. Pukite, P. I. Cohen, and C. S. Lent, J. Vac. Sci. Technol. A1, 609 (1983)ADSGoogle Scholar
  11. 11.
    G. Comsa, Surf. Sci. 81, 57 (1979).ADSCrossRefGoogle Scholar
  12. 12.
    C. S. Lent and P. I. Cohen, Surf. Sci. 139, 121 (1984).ADSCrossRefGoogle Scholar
  13. 13.
    J. M. Pimbley and T.-M. Lu, Surf. Sci. 159, 169 (1985).ADSCrossRefGoogle Scholar
  14. 14.
    R. Kariotis, B. S. Swartzentruber, and M. G. Lagally, J. Appl. Phys. 62, 2848 (1990).ADSCrossRefGoogle Scholar
  15. 15.
    R. L. Schwoebel and E. J. Shipsey, J. Appl. Phys. 37, 3682 (1967).ADSCrossRefGoogle Scholar
  16. 16.
    D. Saluja, P. R. Pukite, S. Batra, and P. I. Cohen, J. Vac. Sci. Technol. B5, 710 (1987).Google Scholar
  17. 17.
    D. C. Radulescu, G. W. Wicks, W. J. Schaff, A. R. Calawa, L. F. Eastman, J. Appl. Phys. 63, 5115 (1988).ADSCrossRefGoogle Scholar
  18. 18.
    G. S. Petrich, A. M. Dabiran, and P. I. Cohen, to be submitted.Google Scholar
  19. 19.
    P. Bennema and G. H. Gilmer, in: Crystal Growth: An Introduction. P. Hartman ed. (North Holland, 1973) ch. 10.Google Scholar
  20. 20.
    Y. Tokura, H. Saito, and T. Fukui, J. Cryst. Growth 94, 46 (1989).ADSCrossRefGoogle Scholar
  21. 21.
    N. Inoue, Y. Tanishiro, and K. Yagi, Jpn. J. Appl. Phys. pt. 2, 26, L293 (1987).CrossRefGoogle Scholar
  22. 22.
    M. G. Lagally, Y.-W. Mo, R. Kariotis, B. S. Swartzentruber, and M. B. Webb, this volume.Google Scholar
  23. 23.
    P. R. Pukite, J. M. Van Hove, and P. I. Cohen, Appl. Phys. Lett. 44, 456 (1984).ADSCrossRefGoogle Scholar
  24. 24.
    P. M. Petroff, private communication.Google Scholar
  25. 25.
    N. Bartelt and T. L. Einstein, submitted to Surf. Sci., 1989.Google Scholar
  26. 26.
    M. Fisher, J. Stat. Phys. 34, 667 (1984).ADSzbMATHCrossRefGoogle Scholar
  27. 27.
    S. A. Chalmers, A. C. Gossard, P. M. Petroff, J. M. Gaines, and H. Kroemer, J. Vac. Sci. Technol. B7, 1357 (1989).Google Scholar
  28. 28.
    J. M. Van Hove and P. I. Cohen, Appl. Phys. Lett. 47, 726 (1985).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • P. I. Cohen
    • 1
  • G. S. Petrich
    • 1
  • A. M. Dabiran
    • 1
  • P. R. Pukite
    • 1
  1. 1.Department of Electrical EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations