Surface Kinetics and Growth Morphology: Theoretical Models and Physical Realizations

  • Boyan Mutaftschiev
Part of the NATO ASI Series book series (NSSB, volume 239)


In the first part of the paper we discuss the shape and phase shift of the reemitted beam intensity when a stepped crystal face is exposed, in vacuum, to periodic square shaped pulses of a molecular beam. Two mathematical solutions are proposed: the periodic steady state solution which allows the determination of mean stay time and scaled interstep distance on the surface from measurements of phase shift and amplitude attenuation of the reemitted beam first harmonic, and a solution valid for long incident beam pulses, according to which the same parameters can be determined from the shape of the reemitted beam intensity.

In the second part are given some experimental results concerning the condensation of submonolayers of platine on Pt(111). A theoretical model analogous to that of the first part but taking into account the irreversible adsorption in this case, allows to interpret the different roughness of the Pt-surface during growth in the temperature range of 130–400 K, as due to the competition between propagation of growth fronts and two-dimensional nucleation on the flat regions between them.

The third part of the paper deals with the changes in the electronic structure of Pt-thin films on Ni(111) after annealing. It is shown that, while in the most cases the work function of the films has an intermediate value between those of Pt and Ni, due to the formation of surface alloy, in the cases when no alloy formation is visible (by LEED), the work function can be very different. This result is explained by the elastic stress of the Pt-overlayers.


Work Function Surface Diffusion Active Band Ultraviolet Photoelectron Spectroscopy Terrace Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.C. Brice, Growth of Crystals from the Melt, North Holland, Amsterdam, 1965.Google Scholar
  2. 2.
    D. T. J. Hurle, in: Crystal Growth: an Introduction. P. Hartman, ed., North Holland, Amsterdam, 1973, pp. 210–247.Google Scholar
  3. 3.
    B. Mutaftschiev, in: Dislocations in Solids, vol. 5, F. R. N. Nabarro, ed., North Holland, Amsterdam, 1980, pp. 57–126.Google Scholar
  4. 4.
    J. R. Arthur, Surf. Sci. 43, 449 (1974).ADSCrossRefGoogle Scholar
  5. 5.
    J. H. Neave, B. A. Joyce, P. J. Dobson and N. Norton, Appl. Phys. A31. 1 (1983).ADSGoogle Scholar
  6. 6.
    A. Y. Cho, in: Molecular Beam Epitaxy and Heterostructures. L. J. Chang and K. Ploog, eds, NATO Adv. Stud. Inst. Ser., vol. E 87, Nyhoff, Dordrecht, 1985, pp. 191–226.Google Scholar
  7. 7.
    H. Dabringhaus and H. J. Meyer, J. Crystal Growth 16, 17, 31 (1973).CrossRefGoogle Scholar
  8. 8.
    B. J. Stein and H. J. Meyer, J. Crystal Growth 49, 696 (1980).ADSCrossRefGoogle Scholar
  9. 9.
    H. Dabringhaus and H. J. Meyer, J. Crystal Growth 61, 85, 95 (1983).ADSCrossRefGoogle Scholar
  10. 10.
    H. Dabringhaus and H. J. Meyer, Surf. Sci. in press.Google Scholar
  11. 11.
    C. R. Henry, PhD Thesis, University of Aix-Marseille III, Marseille, 1983.Google Scholar
  12. 12.
    C. R. Henry, C. Chapon and B. Mutaftschiev, Surf. Sci. 163, 409 (1985).ADSCrossRefGoogle Scholar
  13. 13.
    S. T. Ceyer and G. A. Somorjai, Ann. Rev. Phys. Chem. 28, 477 (1977).ADSCrossRefGoogle Scholar
  14. 14.
    M. P. D’Evelyn and R. J. Madix, Surf. Sci. Rep. 3, 412 (1984).Google Scholar
  15. 15.
    V. Bostanov, J. Crystal Growth 42, 194 (1977).ADSCrossRefGoogle Scholar
  16. 16.
    E. Budevski, in: Interfacial Aspects of Phase Transformations. B. Mutaftschiev ed., NATO Adv. Stud. Inst. Ser., vol. C, 87, Reidel, Dordrecht, 1982, pp. 559–604.Google Scholar
  17. 17.
    H. Bethge, K. W. Keller and E. Ziegler, J. Crystal Growth 3/4, 194 (1968).CrossRefGoogle Scholar
  18. 18.
    H. J. Meyer, H. Dabringhaus, A. Maas and B. J. Stein, J. Crystal Growth 30, 225 (1975).ADSCrossRefGoogle Scholar
  19. 19.
    W. K. Burton, N. Cabrera and F. C. Frank, Phil. Trans. Roy. Soc. (London) A 243. 299 (1951).MathSciNetADSGoogle Scholar
  20. 20.
    W. K. Burton and N. Cabrera, Disc. Farad. Soc. 5, 38, 40 (1949).CrossRefGoogle Scholar
  21. 21.
    C. R. Henry and B. Mutaftschiev, to be published.Google Scholar
  22. 22.
    M. Alnot, J. J. Ehrhardt and J. A. Barnard, Surf. Sci. 208, 285 (1989).ADSCrossRefGoogle Scholar
  23. 23.
    K. Wandelt, J. Vac. Sci. Technol. A2, 802 (1984).ADSGoogle Scholar
  24. 24.
    K. Wandelt, in: Thin Metal Films and Gas Chemisorption. P. Wissmann ed., Elsevier, Amsterdam, 1987, pp. 280–371.CrossRefGoogle Scholar
  25. 25.
    M. Alnot, J. A. Barnard, J.J. Ehrhardt and B. Mutaftschiev, J. Crystal Growth, in press.Google Scholar
  26. 26.
    D. W. Basset and P. R. Webber, Surf. Sci. 70, 520 (1978).ADSCrossRefGoogle Scholar
  27. 27.
    G. Zinsmeister, Vacuum 16, 529 (1966); Thin Solids Films 2, 497 (1968).CrossRefGoogle Scholar
  28. 28.
    C. Chapon and B. Mutaftschiev, Z. Phys. Chem. (Neue Folge) 77, 93 (1972).CrossRefGoogle Scholar
  29. 29.
    J. A. Barnard, J. J. Ehrhardt, H. Azzouzi and M. Alnot, Surf. Sci. 211/212. 740 (1989).CrossRefGoogle Scholar
  30. 30.
    J. A. Barnard and J. J. Ehrhardt, to be published.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Boyan Mutaftschiev
    • 1
  1. 1.Centre National de la Recherche ScientifiqueLaboratoire Maurice LetortVillers les NancyFrance

Personalised recommendations