Folding of Eukaryotic Proteins Produced in Escherichia Coli

  • Robert F. Kelley
  • Marjorie E. Winkler
Part of the Genetic Engineering book series (GEPM, volume 12)

Abstract

The development of recombinant DNA technology has allowed production in prokaryotic hosts of proteins derived from eukaryotic organisms. The use of heterologous expression has had a large impact on the pharmaceutical industry since it enables large scale production of proteins which may have been difficult to isolate from a natural source. This approach also avoids the potential for contamination with disease agents associated with the isolation of a protein from human tissues. An example of this approach is the production in Escherichia coli of human growth hormone (1), used in the treatment of pituitary dwarfism. Studies of protein structure-function are also facilitated if the target protein can be produced in a prokaryote. For these studies, heterologous expression enables rapid production of variant proteins, either by directed or random mutagenesis, in sufficient quantities for detailed characterization using biochemical and biophysical methods.

Keywords

Urea Enthalpy Glutathione Glycol Cysteine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gray, G.L., Baldridge, J.S., McKeown, K.S., Heyneker, H.L. and Chang, C.N. (1985) Gene 39, 247–254.PubMedCrossRefGoogle Scholar
  2. 2.
    Williams, D.C., Van Frank, R.M., Muth, W.L. and Burnett, J.P. (1982) Science 215, 687–689.PubMedCrossRefGoogle Scholar
  3. 3.
    Schoner, R.G., Ellis, L.F. and Schoner, B.E. (1985) Bio/Technology 3, 151–154.CrossRefGoogle Scholar
  4. 4.
    Mitraki, A. and King, J. (1989) Bio/Technology 7, 690–697.CrossRefGoogle Scholar
  5. 4.
    Mitraki, A. and King, J. (1989) Bio/Technology 7, 690–697.CrossRefGoogle Scholar
  6. 6.
    Baldwin, R.L. (1975) Annu. Rev. Biochemistry 44, 453–475.CrossRefGoogle Scholar
  7. 7.
    Kim, P.S. and Baldwin, R.L. (1982) Annu. Rev. Biochemistry 51, 459–489.CrossRefGoogle Scholar
  8. 8.
    Goldenberg, D.P. (1988) Annu. Rev. Biophys. and Biophys. Chem. 17, 481–507.CrossRefGoogle Scholar
  9. 9.
    Anfinsen, C.B., Haber, E., Sela, M. and White, F.H. (1961) Proc. Nat. Acad. Sci. U.S.A. 47, 1309–1314.CrossRefGoogle Scholar
  10. 10.
    Anfinsen, C.B. (1973) Science 181, 223–230.PubMedCrossRefGoogle Scholar
  11. 11.
    Kauzmann, W. (1959) Adv. Protein Chem. 14, 1–63.PubMedCrossRefGoogle Scholar
  12. 12.
    Brandts, J.F. Halvorson, H.R. and Brennan, M. (1975) Biochemistry 14, 4953–4963.PubMedCrossRefGoogle Scholar
  13. 13.
    Kelley, R.F. and Richards, F.M. (1987) Biochemistry 26, 6765–6774.PubMedCrossRefGoogle Scholar
  14. 14.
    Levinthal, C. (1968) J. Chim. Phys. 65, 44–45.Google Scholar
  15. 15.
    Cook, K.H., Schmid, F.X. and Baldwin, R.L. (1979) Proc. Nat. Acad. Sci. U.S.A. 76, 6157–6161.CrossRefGoogle Scholar
  16. 16.
    Schmid, F.X. and Baldwin, R.L. (1979) J. Mol. Biol. 135, 199–215.PubMedCrossRefGoogle Scholar
  17. 17.
    Kelley, R.F., Wilson, J., Bryant, C. and Stellwagen, E. (1986) Biochemistry 25, 728–732.PubMedCrossRefGoogle Scholar
  18. 18.
    Creighton, T.E., Hillson, D.A. and Freedman, R.B. (1980) J. Mol. Biol. 142, 43–62.PubMedCrossRefGoogle Scholar
  19. 19.
    Pigiet, V.P. and Schuster, B.J. (1986) Proc. Nat. Acad. U.S.A. 83, 7643–7647.CrossRefGoogle Scholar
  20. 20.
    Steiner, D.F. and Clark, J.L. (1968) Proc. Nat. Acad. Sci. U.S.A. 60, 622–629.CrossRefGoogle Scholar
  21. 21.
    Grafl, R., Lang, K., Vogl, H. and Schmid, F.X. (1987) J. Biol. Chem. 262, 10624–10629.PubMedGoogle Scholar
  22. 22.
    Shulke, N. and Schmid, F.X. (1988) J. Biol. Chem. 263, 8832–8837.Google Scholar
  23. 23.
    Varadarajan, R., Szabo, A. and Boxer, S.G. (1985) Proc. Nat. Acad. Sci. U.S.A. 82, 5681–5684.CrossRefGoogle Scholar
  24. 24.
    Nilsson, B., Abrahamsen, L. and Uhlen, M. (1985) EMBO J. 4, 1075–1080.PubMedGoogle Scholar
  25. 25.
    Marks, C., Vasser, M., Ng, P., Henzel, W. and Anderson, S. (1986) J. Biol. Chem. 261, 7115–7118.PubMedGoogle Scholar
  26. 26.
    Dalbey, R.E. and Wickner, W. (1986) J. Biol. Chem. 261, 13844–13849.PubMedGoogle Scholar
  27. 27.
    Crooke, E. and Wickner, W. (1987) Proc. Nat. Acad. Sci. U.S.A. 84, 5216–5220.CrossRefGoogle Scholar
  28. 28.
    Randall, L.L., Hardy, S.J.S. and Thom, J.R. (1987) Annu. Rev. Microbiology 41, 507–541.CrossRefGoogle Scholar
  29. 29.
    Winkler, M.E. and Blaber, M. (1986) Biochemistry 25, 4041–4045.PubMedCrossRefGoogle Scholar
  30. 30.
    Creighton, T.E. (1977) J. Mol. Biol. 113, 329–341.PubMedCrossRefGoogle Scholar
  31. 31.
    Schaffer, S.W., Ahmed, A. and Wetlaufer, D.B. (1975) J. Biol. Chem. 250, 8483–8486.PubMedGoogle Scholar
  32. 32.
    Teipel, J.W. and Koshland, D.E. (1971) Biochemistry 10, 792–805.PubMedCrossRefGoogle Scholar
  33. 33.
    Winkler, M.E., Bringman, T. and Marks, B.J. (1986) J. Biol. Chem. 261, 13838–13843.PubMedGoogle Scholar
  34. 34.
    Winkler, M.E. (1987) in Protein Structure, Folding and Design 2 (Oxender, D.L., ed.), pp. 363–372, Alan R. Liss, Inc., NY.Google Scholar
  35. 35.
    Nagai, K. and Thogersen, H.C. (1987) Methods in Enzymology 153, 461–481.PubMedCrossRefGoogle Scholar
  36. 35.
    Nagai, K. and Thogersen, H.C. (1987) Methods in Enzymology 153, 461–481.PubMedCrossRefGoogle Scholar
  37. 37.
    Winkler, M.E., Blaber, M., Bennett, G.L., Holmes, W. and Vehar, G. (1985) Bio/Technology 3, 990–1000.CrossRefGoogle Scholar
  38. 38.
    Cantor, C.R. and Schimmel, P.R. (1980) Biophysical Chemistry, Part II, W.H. Freeman, San Francisco, CA.Google Scholar
  39. 39.
    Privalov, P. (1979) Adv. Protein Chem. 33, 167–241.PubMedCrossRefGoogle Scholar
  40. 40.
    Pennica, D., Holmes, W.E., Kohr, W.J., Harkins, R.N., Vehar, G.A., Ward, C.A., Bennett, W.F., Yelverton, E., Seeburg, P.H., Heyneker, H.L. and Goeddel, D.V. (1983) Nature (London) 301, 214–220.CrossRefGoogle Scholar
  41. 41.
    Cleary, S., Mulkerrin, M.G. and Kelley, R.F. (1989) Biochemistry 28, 1884–1891.PubMedCrossRefGoogle Scholar
  42. 42.
    Kelley, R.F. and Cleary, S. (1989) Biochemistry 28, 4047–4054.PubMedCrossRefGoogle Scholar
  43. 43.
    Castellino, F.J., Ploplis, V.A., Powell, J.R. and Strickland, D.K. (1981) J. Biol. Chem. 256, 4778–4782.PubMedGoogle Scholar
  44. 44.
    Trexler, M. and Patthy, L. (1983) Proc. Nat. Acad. Sci. U.S.A. 80, 2457–2461.CrossRefGoogle Scholar
  45. 45.
    Castellino, F.J., DeSerrano, V.S., Powell, J.R., Johnson, W.R. and Beals, J.M. (1986) Arch. Biochem. Biophys. 247, 312–320.PubMedCrossRefGoogle Scholar
  46. 46.
    Park, C.H. and Tulinksy, A. (1986) Biochemistry 25, 3977–3982.PubMedCrossRefGoogle Scholar
  47. 47.
    Strauch, K.L. and Beckwith, J. (1988) Proc. Nat. Acad. Sci. U.S.A. 85, 1576–1580.CrossRefGoogle Scholar
  48. 48.
    Takagi, H., Morinaga, Y., Tsuchiya, M., Ikemura, H. and Inouye, M. (1988) Bio/Technology 6, 948–950.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Robert F. Kelley
    • 1
  • Marjorie E. Winkler
    • 2
  1. 1.Departments of Biomolecular ChemistryGenentech, Inc.South San FranciscoUSA
  2. 2.Recovery Process R&DGenentech, Inc.South San FranciscoUSA

Personalised recommendations