The Fountain Effect in Aerospace Cryogenics

  • S. H. Castles
  • M. J. DiPirro
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 35)

Abstract

A growing number of NASA scientific payloads are using stored liquid helium. Four have flown to date and more are scheduled for flight in 1989 and throughout the next decade. In all cases these payloads have flown or are planning to fly superfluid helium to take advantage of its greater cooling capacity per unit volume. The fountain effect, unique to superfluid helium, provides another important advantage since it can be used for fluid management in 0-g. To date the fountain effect, also called the thermomechanical effect, has been used to perform liquid-vapor phase separation, as in IRAS, IRT and COBE. Future users of superfluid in space will use the fountain effect for liquid-vapor phase separation; for pumping superfluid helium from a storage vessel to a payload, as in the Superfluid Helium On Orbit Transfer Flight Demonstration and the Superfluid Helium Tanker; for actuating a low temperature refrigerator called a vortex cooler; and for circulating liquid helium within a cryostat, as in the Astromag dewar. An introduction to the thermomechanical effect will be given and each particular application in aerospace cryogenics will be discussed.

Keywords

Entropy Vortex Enthalpy Helium Assure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. R. Urbach and P. V. Mason, IRAS cryogenic system flight performance report, in: “Advances in Cryogenic Engineering”, Vol. 29, Plenum Press, New York (1984), p. 651.Google Scholar
  2. 2.
    E. W. Urban and D. R. Ladner, Comparison of I. R. telescope cryogenic performance - laboratory versus space, presented at Space Cryogenics Workshop, Madison, Wisconsin (1987).Google Scholar
  3. 3.
    P. V. Mason et al, Preliminary results of the Spacelab 2 superfluid helium experiment, in: “Advances in Cryogenic Engineering”, Vol. 31, Plenum Press, New York (1986), p. 869.Google Scholar
  4. 4.
    R. A. Hopkins and M. G. Ryschkewitsch, Measured ground performance and predicted orbital performance of the superfluid helium dewar for the Cosmic Background Explorer, in: “Cryogenic Optical Systems and Instruments 2: Proc. SPIE”, Los Angeles, California (1987), p. 134.Google Scholar
  5. 5.
    J. A. Lipa, Aerospace Century 21 (Advances in the Astronautical Sciences Ser.), Vol. 64, G. W. Morgenthaler et al. eds., Univelt, Inc., (1987), p. 1245.Google Scholar
  6. 6.
    M. DiPirro and P. Kittel, The superfluid helium on-orbit transfer (SHOOT) flight demonstration, in: “Advances in Cryogenic Engineering”, Vol. 33, Plenum Press, New York (1988), p. 893.Google Scholar
  7. 7.
    S. H. Castles, S. R. Breon, B. A. Warner, A. T. Serlemitsos, S. M. Volz, and M. G. Ryschkewitsch, The cryogenic subsystem for the X-Ray Spectrometer on Advanced X-Ray Astrophysics Facility (AXAF), in: “Cryogenic Optical Systems and Instruments 3: Proc. SPIE”, San Diego, California (1988), p. 110.CrossRefGoogle Scholar
  8. 8.
    L. M. Gavin, M. A. Green, S. M. Levin, G. F. Smoot and C, Witebsky, Design and testing of a superfluid liquid helium cooling loop, to be published in: “Advances in Cryogenic Engineering”, Vol. 35, Plenum Press, New York.Google Scholar
  9. 9.
    J. H. Lee, Y. S. Ng and S. S. Maa, Dewar Performance Comparison of SIRTF in the 900 km and 70,000 km orbits, to be published in: “Advances in Cryogenic Engineering”, Vol. 35, Plenum Press, New York.Google Scholar
  10. 10.
    R. T. Parmley, Unique cryogenic features of the Gravity Probe B (GP-B) experiment, in: “Advances in Cryogenic Engineering”, Vol. 33, Plenum Press, New York (1988), p. 943.Google Scholar
  11. 11.
    W.E. Keller, “Helium 3 and Helium 4”, Plenum (New York) 1969, chapter 8.CrossRefGoogle Scholar
  12. 12.
    M.J. DiPirro, E.R. Quinn and R.F. Boyle, Tests of a nearly ideal, high rate thermomechanical pump, “Proc. of ICEC12”, Southampton, UK 1988 (Butterworths), p. 646.Google Scholar
  13. 13.
    P.M. Selzer, W.M. Fairbank and C.W.F. Everitt, “A superfluid plug for space”, in: “Advances in Cryogenic Engineering”, Vol. 16, Plenum Press, New York (1971), p. 277.CrossRefGoogle Scholar
  14. 14.
    M.J. DiPirro, D.C. McHugh and J. Zahniser, Phase separators for normal and superfluid helium, “Proc. of ICEC12”, Southampton, UK, 1988 (Butterworths), p. 681; M.J. DiPirro and J. Zahniser, “A liquid/gas phase separator for He I and He II”, to be published in: “Advances in Cryogenic Engineering”, Vol. 35, Plenum Press, New York. Google Scholar
  15. 15.
    M. DiPirro, F. Fash and D. McHugh, Precision measurements on a porous plug for use in COBE, “Proc. 1983 Space Helium Dewar Conf”., University of Alabama Press (Huntsville), (1984); M.J. DiPirro and J. Zahniser, “The liquid/vapor phase Cryogenic Engineering”, Vol. 35, Plenum Press, New York.Google Scholar
  16. 16.
    See, for instance, G. Klipping, Scientific and Engineering Aspects of the Active Phase Separator, in: “Advances in Cryogenic Engineering”, Vol. 31, Plenum Press, New York (1986), p. 851. Google Scholar
  17. 17.
    J.F. Allen and H. Jones, Nature (London) 141, 243 (1938). CrossRefGoogle Scholar
  18. 18.
    J.F. Allen and J. Reekie. Proc. Camh. Phil. Soc. Math. Phy. Sci. 35, 114 (1939).CrossRefGoogle Scholar
  19. 19.
    A. Hofmann, A. Khalil and H.P. Kramer, “Operational characteristics of loops with helium II flow driven by fountain effect pumps”, in: “Advances in Cryogenic Engineering”, Vol. 33, Plenum Press, New York (1988), p. 471.Google Scholar
  20. 20.
    L.M. Gavin, et al., “Design and testing of a superfluid helium cooling loop”, CEC 1989, Los Angeles, CA, to be published in: “Advances in Cryogenic Engineering”, Vol. 35, Plenum Press, New York.Google Scholar
  21. 21.
    J. B. Hendricks, “The minimum temperature of the ’vortex’ cryocooler”, to be published in: “Advances in Cryogenic Engineering”, Vol. 35, Plenum Press, New York. Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • S. H. Castles
    • 1
  • M. J. DiPirro
    • 1
  1. 1.NASA/Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations