Skip to main content

Part of the book series: Frontiers of Computing Systems Research ((FCSR,volume 1))

  • 47 Accesses

Abstract

Since the introduction of integrated circuits in the late 1950’s, the number of individual transistors that can be placed upon a single circuit has approximately doubled every three years. Today, even university design laboratories for teaching of students can access chip foundries which produce 1.2 μm (and smaller) design rule circuits. Compared with this, many commercial companies are experimenting with the production of chips with critical dimensions of 0.1 μm, and university laboratories have produced individual devices with gate lengths much smaller than this [1,2]. The creation of devices whose spatially important scales may be only a few tens of nanometers opens the door to the study of many new and important physical effects, some of which have been described earlier [3]. Indeed, it can rightfully be said that it will be impossible to understand fully the operation of these devices without a full understanding of these newly appearing physical effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Bernstein and D. K. Ferry, Electron beam lithographic fabrication of ultra-submicron GaAs MESFETs, Superlatt. and Microstruc. 2, 147 (1986).

    Article  Google Scholar 

  2. Y. Jin, D. Mailly, F. Cercenac, B. Etienne, and H. Landis, Nanostructurts in GaAs TEGFET, Microelectr. Engr. 6, 195 (1987).

    Article  Google Scholar 

  3. J. R. Barker and D. K. Ferry, On the physics and modeling of small semiconductor devices, Sol.-State Electr. 23, 519 (1981)

    Article  Google Scholar 

  4. J. R. Barker and D. K. Ferry, On the physics and modeling of small semiconductor devices, Sol.-State Electr. 23, 531 (1981).

    Article  Google Scholar 

  5. J. M. Mikkelson, L. A. Hall, A. K. Malhotra, S. D. Seccombe, and M. S. Wilson, An NMOS VLSI process for fabrication of a 32-bit CPU chip, IEEE J. Sol. State Circuits 16, 542 (1981).

    Article  Google Scholar 

  6. G. Baccarani, M. R. Wordeman, and R. H. Dennard, Generalized scaling theory and its application to a 1/4 micrometer MOSFET design, IEEE Trans. Electron Dev. 31, 452 (1984).

    Article  Google Scholar 

  7. R. Troutman, VLSI limitations from drain-induced barrier lowering, IEEE Trans. Electron Dev. 26, 461 (1979).

    Article  Google Scholar 

  8. J. Sinkkonen, S. Eranen, and T. Stubb, Linear conductance of short semiconductor structures, Phys. Rev. B 30, 4813 (1984).

    Article  Google Scholar 

  9. G. Lewicky and J. Maserjian, Oscillations in MOS tunneling, J. Appl. Phys. 46, 3032 (1975).

    Article  Google Scholar 

  10. M. V. Fischetti, D. J. DiMaria, L. Dori, J. Batey, E. Tierney, and J. Stasiak, Ballistic electron transport in thin silicon dioxide films, Phys. Rev. B 35, 4404 (1987).

    Article  Google Scholar 

  11. K. Lehovec and R. Zuleeg, Voltage-Current characteristics of GaAs JFETs in the hot electron range, Sol.-State Electron. 13, 1415 (1970).

    Article  Google Scholar 

  12. J. R. Ruch, Electron transport in short channel field-effect transistors, IEEE Trans. Electron Dev. 19, 652 (1972)

    Article  Google Scholar 

  13. D. K. Ferry and H. L. Grubin, The role of transport in very small devices for VLSI, Microelectr. J. 12(2), 5 (1981).

    Article  Google Scholar 

  14. D. K. Ferry, High-field transport in wide-band-gap semiconductors, Phys. Rev. B 12, 2361 (1975).

    Article  Google Scholar 

  15. D. K. Ferry, Fundamental aspects of hot electron phenomena, in Handbook on Semiconductors, Vol. 1, Ed. by W. Paul (North-Holland, Amsterdam, 1982) pp. 563–598.

    Google Scholar 

  16. R. Zwanzig, Elementary derivation of time-correlation formulas for transport coefficients, J. Chem. Phys. 40, 2527 (1966).

    Article  Google Scholar 

  17. H. Mori, Transport, collective motion, and Brownian motion, Prog. Theor. Phys. 33, 423 (1965).

    Article  MATH  Google Scholar 

  18. J. Zimmermann, P. Lugli, and D. K. Ferry, Non-equilibrium hotcarrier diffusion phenomenon in semiconductors. I. A theoretical non-Markovian approach, J. Phys. Coll. 42-C7, suppl. 10, 95 (1981).

    Google Scholar 

  19. R. Kubo, Statistical-mechanical theory of irreversible processes, J. Phys. Soc. Jpn. 12, 570 (1957).

    Article  MathSciNet  Google Scholar 

  20. P. Lugli, J. Zimmermann, and D. K. Ferry, Non-equilibrium hot-carrier diffusion phenomenon in semiconductors. II. An experimental Monte Carlo approach, J. Phys. Coll. 42-C7, suppl. 10, 103 (1981).

    Google Scholar 

  21. D. K. Ferry, G. Bernstein, and W.-P. Liu, Electron-beam lithography of ultra-submicron devices, in Physics and Technology of Submicron Structures, Ed. by H. Heinrich, G. Bauer, and F. Kuchar (Springer-Verlag, Heidelberg, 1988) pp. 37–44.

    Google Scholar 

  22. G. A. Sai-Halasz, M. R. Wordeman, D. P. Kern, S. Rishton, and E. Ganin, High transconductance and velocity overshoot in NMOS devices at the 0.1 5m gate-length level, IEEE Electron Dev. Letters 9, 464 (1988).

    Article  Google Scholar 

  23. J. R. Barker and D. K. Ferry, Physics and modeling of submicron semiconductor devices, Sol.-State Electr. 23, 531 (1981).

    Article  Google Scholar 

  24. D. K. Ferry, Materials considerations for submicron VLSI, in Adv. in Electronics and Electron Phys. 58, 311 (1982).

    Article  Google Scholar 

  25. D. K. Ferry, Device-device interactions, in The Physics of Submicron Semiconductor Devices, Ed. by H. L. Grubin, D. K. Ferry, and C. Jacoboni (Plenum, New York, 1988) pp. 503–520.

    Google Scholar 

  26. D. K. Ferry, L. A. Akers, and R. O. Grondin, Two-dimensional automata in VLSI, in Physics of VLSI at the 0.5 to 0.05 Micron Dimension, Ed. by R. K. Watts (Academic Press, New York, 1989) pp. 377–412.

    Google Scholar 

  27. D. K. Ferry, L. A. Akers, and E. W. Greeneich, Ultra-Large Scale Integrated Microelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1988).

    Google Scholar 

  28. J.J. Hopfield, Neural Networks and Physical Systems with Emergent Collective Computational Abilities, Proc. Natl. Acad. Sci. U.S.A. 79, 2554 (1982).

    Article  MathSciNet  Google Scholar 

  29. J.J. Hopfield and D.W. Tank, Neural Computation of Decisions in Optimization Problems, Biol. Cybernet. 52, 141 (1985)

    MathSciNet  MATH  Google Scholar 

  30. W.S. McCulloch, and W. Pitts, A Logical Calculus of the Ideas Imminent in Nervous Activity, Bulletin of Mathematical Biophysics, 5 (1943).

    Google Scholar 

  31. L.C. Shiue, R.O. Grondin, Neural Processing of Semantic Networks, International Joint Conference on Neural Networks, Washington, D.C. (1989).

    Google Scholar 

  32. J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Language, and Computation, (Addision-Wesley 1979).

    Google Scholar 

  33. We and others have participated in an “apples vs. oranges” argument of the physical limits to computation. One position insists on the primacy of invertibility, while we have taken the position for the primacy of a physically deterministic evolution. Invertibility (in a logical sense) requires that each row of M contain one and only one non-zero element, while determinism here means that each column of M has one and only one non-zero element. If both requirements are implemented simultaneously, the system state space consists of “garden-of-eden” states and states which are part of complete rings. Therefore, the invertible system cannot pass the standard “halting” definition of a computational automaton, as discussed in [24].

    Google Scholar 

  34. R.O. Grondin, W. Porod, CM. Loeffler, and D.K. Ferry, Synchronous and Asynchronous Systems of Threshold Elements, Biological Cybernetics, 49(1), 1 (1984).

    Article  Google Scholar 

  35. P. Peretto and J.J. Niez, Long Term Memory Storage Capacity of Multiconnected Neural Networks, Biol. Cybernet. 54, 53 (1986).

    Article  MATH  Google Scholar 

  36. L.C. Shiue, R.O. Grondin, An Automata Approach to Reconfigurable Learning Network Design, in Neural Networks from Models to Applications, Ed. by L. Personnaz and G. Dreyfus (E.S.P.C.I., Paris, France 1988).

    Google Scholar 

  37. M. Snyder and D. K. Ferry, Open-loop Stability Criteria for Layered and Fully-Connected Neural Networks, in Neural Networks from Models to Applications, Ed. by L. Personnaz and G. Dreyfus (E.S.P.C.I., Paris, France 1988).

    Google Scholar 

  38. M. Walker and L. A. Akers, A Neuromorphic Approach to Adaptive Digital Circuitry, Proc. IEEE Conf. Computers and Comm. Phoenix 19 (1988).

    Google Scholar 

  39. L. A. Akers, M. Walker, D. K. Ferry, and R. O. Grondin, Limited InterConnectivity in Synthetic Neural Systems in Neural Computers, Ed. by R. Eckmiller and C. v.d. Malsburg (Springer-Verlag, Berlin, 1988) pp. 407–416.

    Google Scholar 

  40. B. Widrow, in Self-Organizing Systems, Ed. by M. Yovits, G. Jacobi, and G. Goldstein (Spartan, New York 1962) pp. 435–461.

    Google Scholar 

  41. B. Widrow, and R. Winter, Neural Nets for Adaptive Filtering and Adaptive Pattern Recognition, IEEE Computer 21, 25 (1988).

    Google Scholar 

  42. Y. Le Cun, Learning Process in an Asymmetric Threshold Network in Disordered Systems and Biological Organization, Ed by E. Bienenstock (Springer-Verlag, New York 1985).

    Google Scholar 

  43. D. Plaut, S. Nowlan, and G. Hinton, Experiments on Learning by Back Propagation, Computer Science Tech. Rep. (Carnegie-Mellon 1986).

    Google Scholar 

  44. M. Walker, and L. A. Akers, Training of Limited-Interconnect Feedfordward Neural Arrays, Abst. First Annual INNS Meeting, Boston 372 (1988).

    Google Scholar 

  45. J. Hopfield, Neural Networks and Physical Systems with Emergent Collective Computational Abilities, Proc. Nat. Acad. Sci. 79, 2554 (1982).

    Article  MathSciNet  Google Scholar 

  46. D. Tank and J. Hopfield, Simple Neural Optimization Networks: An A/D converter, Signal Decision Circuit, and a Linear Programming Circuit, IEEE Trans. Cir. Syst. CAS-33, 533 (1986).

    Article  Google Scholar 

  47. H. P. Graf, L. Jackel, R. Howard, B. Howard, B. Stranghn, J. Denker, W. Hubbard, D. Tennant, and D. Schwartz, VLSI Implementation of a Neural Network Memory with Several Hundreds of Neurons, AIP Conf. Proceeding, Snowbird 151 182 (1986).

    Google Scholar 

  48. W. Hubbard, D. Schwartz, J. Denker, H. Graf, R. Howard, L. Jackel, G. Straughn, and D. Tennant, Electronic Neural Networks, in Neural Networks for Computing, J. S. Denker Ed., AIP Conf. Proc. 151 (1986).

    Google Scholar 

  49. L. D. Jackel, H. P. Graf and R. E. Howard, Electronic Neural Network Chips, Applied Optics, December 26(23) (1987).

    Google Scholar 

  50. H. P. Graf and P. DeVgar, A CMOS Implementation of a Neural Network Model, in Advance Research in VLSI: Proceedings of 1987 Stanford Conference, Ed by Paul Losleben (MIT Press, Cambridge, MA 1987).

    Google Scholar 

  51. M. A. Sivilotti, M. A. Mahowald and C. Mead, A Real Time Visual Computation using Analog CMOS Processing Arrays, in Advance Research in VLSI: Proceedings of 1987 Stanford Conference, Ed by Paul Losleben (MIT Press, Cambridge, MA 1987).

    Google Scholar 

  52. D. Hillis, The Connection Machine, (MIT Press, Boston 1985).

    Google Scholar 

  53. L. A. Akers, M. Walker, D. K. Ferry, and R. O. Grondin, A Limited-Interconnect, Highly Layered Synthetic Neural Architecture in VLSI for Artificial Intelligence, Ed by J. Delgado and W. Moore, (Kluwer Academic, Norwell, MA. 1989) pp. 407–416.

    Google Scholar 

  54. L. A. Akers and M. Walker, A Limited-Interconnect Synthetic Neural IC, Proc. IEEE Neural Net. Conf., San Diego, III,151 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Ferry, D.K., Grondin, R.O., Akers, L.A., Shiue, L.C. (1990). Architectures and Devices for ULSI. In: Tewksbury, S.K. (eds) Frontiers of Computing Systems Research. Frontiers of Computing Systems Research, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0633-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0633-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7902-0

  • Online ISBN: 978-1-4613-0633-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics