Selected References on Optical Computing Using Phase Conjugation

  • G. J. Dunning
  • C. R. Giuliano
Part of the Ettore Majorana International Science Series book series (volume 49)


There are many potential advantages for applying phase conjugation to optical computing. Phase conjugation can be used to provide optical amplification, thresholding, optical feedback and exact retroreflection. These properties, either singly or in combination can be used in various architectures to implement a host of computing algorithms.


Canyon Road Associative Memory Phase Conjugation Photorefractive Crystal Optical Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Anderson, Coherent optical eigenstate memory, Opt. Lett., 11, (1986)Google Scholar
  2. 2.
    J. AuYeung, Phase conjugation from nonlinear photon echoes, in: “Optical Phase Conjugation”, R. Fisher ed., Academic Press, (1983)Google Scholar
  3. 3.
    Y. Bai, W. Babbit, N. Carlson and T. Mossberg, Real-time optical waveform convolver/cross correlator, Appl. Phys. Lett., 45, Oct. 1984Google Scholar
  4. 4.
    J. Buchert, R. Dorsinvilie, P. Delfyett, S. Krimchansky and R. Alfano, Determination of temporal correlation of ultrafast laser pulses using phase conjugation. Opt. Comm., 52, Jan. 1985Google Scholar
  5. 5.
    N. Carlson, L. Rothberg, A. Yodh, W. Babbit and Mossberg, Storage and time reversal of light pulses using photon echoes, Opt. Lett., 8, Sept. 1983Google Scholar
  6. 6.
    N. Carlson, Y. Bai, W. Babbit and T. Mossberg, Temporally programmed free-induction decay, Phys. Rev. A, 30, Sept. 1984Google Scholar
  7. 7.
    H. Caulfield, Associate mappings by optical olography, Opt. Comm., 55, August 1985Google Scholar
  8. 8.
    A. Chiou and P. Yeh, Parallel image subtraction using a phaseconjugate Michelson interferometer, Opt. Lett., Vol 11, p.306, May 1986ADSCrossRefGoogle Scholar
  9. 9.
    M. Cohen, Coupled mode theory for neural networks: the processing capabilities of nonlinear mode-mode interactions at cubic and higher order, Proceedings of Neural Net Conference, Snowbird, UT, 1986Google Scholar
  10. 10.
    M. Cohen, Design of a new medium for volume holographic information processing, Proceedings of Neural Net Conference, Snowbird, UT, 1986Google Scholar
  11. 11.
    M. Cohen, Self organization, associaton, and categorization in a phase conjugation resonator, Proceedings of SPIE Optical Computing, 625, January 1986Google Scholar
  12. 12.
    G. Dunning and R. Lind, Demonstration of image transmission through fibers by optical phase conjugation, Opt. Lett., 7, Nov. 1982Google Scholar
  13. 13.
    G. Dunning, E. Marom, Y. Owechko and B. Soffer, An all-optical associative memory with shift invariance and multiple image recall, Opt. Lett., 12, May 1987Google Scholar
  14. 14.
    Y. Fainman, C. Guest and S. Lee, Optical digital logic operations by two-beam coupling in photorefractive material, Appl. Opt., 25, May 1986Google Scholar
  15. 15.
    Y. Fainman and S. Lee, Applications of photorefractive crystals to optical signal processing, in: “Optical and Hybryd Computing”, SPIE Vol. 634, 1986Google Scholar
  16. 16.
    N. Farhat, D. Psaltis, A. Prata, and E. Paek, Optical implementation of the Hopfield model, Appl. Opt., 24, 1469 (1985)ADSCrossRefGoogle Scholar
  17. 17.
    G. Gheen and L. Cheng, Image processing by four-wave mixing in photo-refractive GaAs, Appl. Phys. Lett., 51, Nov. 1987Google Scholar
  18. 18.
    O. Ykeda, T. Sato and H. Kojima, Construction of a wiener filter using a phase conjugate filter, J. Opt. Soc. Am. A, 3, May 1986Google Scholar
  19. 19.
    R. Jain and G. Dunning, Spatial and temporal properties of a continuous-wave phase conjugate resonator based on the photorefractive crystal BaTi03, Opt. Lett., 7, Sept. 1982Google Scholar
  20. 20.
    A. Kamshilin and M. Petrov, Sov. Tech. Phys. Lett., 6, 144, 1980Google Scholar
  21. 21.
    M. Kim and C. Guest, Adaptive 2D holographic associative processor, Proceedings of SPIE Optical Computing, 625, January 1986Google Scholar
  22. 22.
    M. Klein, G. Dunning, G. Valley, R. Lind, and T. O’Meara, Imaging threshold detector using a phase-conjugate resonator in BaTiO3, Opt. Lett., 11, Sept. 1986Google Scholar
  23. 23.
    S. Kwong, G. Rakuljic and A. Yariv, Real-time image subtraction and exclusive or operation using a self-pumped phase conjugate mirror, Appl. Phys. Lett., 48, Jan. 1986Google Scholar
  24. 24.
    J. Marburger, Optical pulse integration and chirp reversal in degenerate four-wave mixing, Appl. Phys. Lett., 32, March 1978Google Scholar
  25. 25.
    A. Marrakchi, A. Tanguay, J. Yu and D. Psaltis, Physical characterization of the photorefractive incoherent to coherent optical converter, Opt. Eng., 24, Jan. 1985Google Scholar
  26. 26.
    E. Ochoa, L. Esselink and J. Goodman, Real-time intensity inversion using two-wave mixing in photorefractive Bi12Si020, Appl. Opt., 24, 1985Google Scholar
  27. 27.
    S. Odulov and M. Soskin, Correlation analysis of images under degenerate four-wave mixing in colliding beams, Sov. Phys. Dokl., 25, May 1980Google Scholar
  28. 28.
    T. O’Meara and A. Yariv, Time-domain signal processing via fourwave mixing in nonlinear delay lines, Opt. Eng., 21, March 1982Google Scholar
  29. 29.
    Y. Owechko, G. Dunning, E. Marom and B. Soffer, A holographic associative memory with nonlinearities in the correlation domain, Appl. Opt., 26, March 1987Google Scholar
  30. 30.
    D. Pepper, J. Yeung, D. Fekete and A. Yariv, Spatial convolution and correlation of optical fields via degenerate four-wave mixing, Opt. Lett., 3, 1978Google Scholar
  31. 31.
    M. Petrov, S. Miridonov, S. Stepanov and V. Kulikov, Light diffraction and nonlinear image processing in electrooptic Bi12Si020 crystals, Opt. Comm., 31, Dec. 1979Google Scholar
  32. 32.
    L. Pichon and J. Huignard, Dynamic joint-fourier-transform correlator by bragg diffraction in photorefractive Bi12SiO20 crystals, Opt. Comm., 36, Feb. 1981Google Scholar
  33. 33.
    D. Psaltis, J. Yu and J. Hong, Bias-free time integrating optical correlator using a photorefractive crystal, Appl. Opt., 24, Nov. 1985Google Scholar
  34. 34.
    D. Psaltis and N. Farhat, Optical information processing based on an associative-memory model of neural nets with thresholding and feedback, Opt. Lett., 10, Feb. 1985Google Scholar
  35. 35.
    D. Psaltis, J. Hong, and S. Venkatest, Shift invariance in optical associative memories, Proceedings of SPIE Optical Computing, 625, Jan. 1986Google Scholar
  36. 36.
    D. Psaltis. D. Brady and K. Wagner, Adaptive optical networks using photorefractive crystals, Appl. Opt., 51, May 1988Google Scholar
  37. 37.
    D. Psaltis and D. Brady, A photorefractive integrated otpical vector matrix multiplier, SPIE Proceedings, 825, Aug. 1987Google Scholar
  38. 38.
    H. Rajbenbach, Y. Fainmam and S. Lee, Optical implementation of an iterative algorithm for matrix inversion, Appl. Opt., 26, March 1987.Google Scholar
  39. 39.
    A. Rebane and R. Kaarli, Picosecond pulse shaping by photochemical time-domain holography, Chem. Phys. Lett., 101, Oct. 1983Google Scholar
  40. 40.
    K. Sayano, G. Rakuljic and A. Yariv, Thresholding semilinear phase conjugate mirror, Opt. Lett., 13, Feb. 1988Google Scholar
  41. 41.
    Y. Shi, D. Psaltis, A. Marrakchi and A. Tanguay, Photorefractive incoherent-to-coherent optical converter, Appl. Opt., 22, Dec. 1983Google Scholar
  42. 42.
    B. Soffer, G. Dunning, Y, Owechko and E. Marom, Associative holographic memory with feedback using phase-conjugate mirrors, Opt. Lett., 11, Feb. 1986Google Scholar
  43. 43.
    Y. Tomita, R. Yahalom and A. Yariv, Real-time image subtraction with the use of wave polarization and phase conjugation, Appl. Phys. Lett., 52, Feb. 1988Google Scholar
  44. 44.
    K. Wagner and D. Psaltis, Multilayer optical learning networks, Appl. Opt., 26, Dec. 1987Google Scholar
  45. 45.
    H. White, N. Alridge and I. Lindsay, Digital and analogue holographic associative memories, Opt. Eng., 27, Jan. 1988Google Scholar
  46. 46.
    J. White and A. Yariv, Real-time image processing via four-wave mixing in a photorefractive medium, Appl. Phys. Lett., 37, July 1980Google Scholar
  47. 47.
    A. Yariv, Y. Tomita and Kazuo Kyuma, Theoretical model for modal dispersal of polarization information and its recovery by phase conjugation, Opt. Lett, 11, Dec. 1986Google Scholar
  48. 48.
    A. Yariv and S. Kwong, Associative memories based on messagebearing optical modes in phase-conjugate resonators, Opt. Lett., 11, March 1986Google Scholar
  49. 49.
    A. Yariv, S. Kwong, and K. Kyuma, Demonstration of an all-optical associative holographic memory, Appl. Phys. Lett., 48, April 1986Google Scholar
  50. 50.
    P. Yeh and A. Chiou, Optical matrix-vector multiplication through four-wave mixing in photorefractive media, Opt. Lett., Vol. 12, p. 138, February 1987ADSCrossRefGoogle Scholar
  51. 51.
    J. Yu, J. Hong and D. Psaltis, Photorefractive time integrating correlator and adaptive processor, OSA Topical Meeting on Photorefractives and Applications, L.A. Ca 1987Google Scholar
  52. 52.
    A. Zuikov, V. Samartsev and R. Usmanov, Correlation of the shape of light echo signals with the shape of the excitation pulses, JETP Lett., 32, Aug. 1980.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • G. J. Dunning
    • 1
  • C. R. Giuliano
    • 1
  1. 1.Hughes Research LaboratoriesMalibuUSA

Personalised recommendations