Skip to main content

Selected References on Optical Computing Using Phase Conjugation

  • Chapter
Nonlinear Optics and Optical Computing

Part of the book series: Ettore Majorana International Science Series ((POLS,volume 49))

  • 157 Accesses

Abstract

There are many potential advantages for applying phase conjugation to optical computing. Phase conjugation can be used to provide optical amplification, thresholding, optical feedback and exact retroreflection. These properties, either singly or in combination can be used in various architectures to implement a host of computing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Anderson, Coherent optical eigenstate memory, Opt. Lett., 11, (1986)

    Google Scholar 

  2. J. AuYeung, Phase conjugation from nonlinear photon echoes, in: “Optical Phase Conjugation”, R. Fisher ed., Academic Press, (1983)

    Google Scholar 

  3. Y. Bai, W. Babbit, N. Carlson and T. Mossberg, Real-time optical waveform convolver/cross correlator, Appl. Phys. Lett., 45, Oct. 1984

    Google Scholar 

  4. J. Buchert, R. Dorsinvilie, P. Delfyett, S. Krimchansky and R. Alfano, Determination of temporal correlation of ultrafast laser pulses using phase conjugation. Opt. Comm., 52, Jan. 1985

    Google Scholar 

  5. N. Carlson, L. Rothberg, A. Yodh, W. Babbit and Mossberg, Storage and time reversal of light pulses using photon echoes, Opt. Lett., 8, Sept. 1983

    Google Scholar 

  6. N. Carlson, Y. Bai, W. Babbit and T. Mossberg, Temporally programmed free-induction decay, Phys. Rev. A, 30, Sept. 1984

    Google Scholar 

  7. H. Caulfield, Associate mappings by optical olography, Opt. Comm., 55, August 1985

    Google Scholar 

  8. A. Chiou and P. Yeh, Parallel image subtraction using a phaseconjugate Michelson interferometer, Opt. Lett., Vol 11, p.306, May 1986

    Article  ADS  Google Scholar 

  9. M. Cohen, Coupled mode theory for neural networks: the processing capabilities of nonlinear mode-mode interactions at cubic and higher order, Proceedings of Neural Net Conference, Snowbird, UT, 1986

    Google Scholar 

  10. M. Cohen, Design of a new medium for volume holographic information processing, Proceedings of Neural Net Conference, Snowbird, UT, 1986

    Google Scholar 

  11. M. Cohen, Self organization, associaton, and categorization in a phase conjugation resonator, Proceedings of SPIE Optical Computing, 625, January 1986

    Google Scholar 

  12. G. Dunning and R. Lind, Demonstration of image transmission through fibers by optical phase conjugation, Opt. Lett., 7, Nov. 1982

    Google Scholar 

  13. G. Dunning, E. Marom, Y. Owechko and B. Soffer, An all-optical associative memory with shift invariance and multiple image recall, Opt. Lett., 12, May 1987

    Google Scholar 

  14. Y. Fainman, C. Guest and S. Lee, Optical digital logic operations by two-beam coupling in photorefractive material, Appl. Opt., 25, May 1986

    Google Scholar 

  15. Y. Fainman and S. Lee, Applications of photorefractive crystals to optical signal processing, in: “Optical and Hybryd Computing”, SPIE Vol. 634, 1986

    Google Scholar 

  16. N. Farhat, D. Psaltis, A. Prata, and E. Paek, Optical implementation of the Hopfield model, Appl. Opt., 24, 1469 (1985)

    Article  ADS  Google Scholar 

  17. G. Gheen and L. Cheng, Image processing by four-wave mixing in photo-refractive GaAs, Appl. Phys. Lett., 51, Nov. 1987

    Google Scholar 

  18. O. Ykeda, T. Sato and H. Kojima, Construction of a wiener filter using a phase conjugate filter, J. Opt. Soc. Am. A, 3, May 1986

    Google Scholar 

  19. R. Jain and G. Dunning, Spatial and temporal properties of a continuous-wave phase conjugate resonator based on the photorefractive crystal BaTi03, Opt. Lett., 7, Sept. 1982

    Google Scholar 

  20. A. Kamshilin and M. Petrov, Sov. Tech. Phys. Lett., 6, 144, 1980

    Google Scholar 

  21. M. Kim and C. Guest, Adaptive 2D holographic associative processor, Proceedings of SPIE Optical Computing, 625, January 1986

    Google Scholar 

  22. M. Klein, G. Dunning, G. Valley, R. Lind, and T. O’Meara, Imaging threshold detector using a phase-conjugate resonator in BaTiO3, Opt. Lett., 11, Sept. 1986

    Google Scholar 

  23. S. Kwong, G. Rakuljic and A. Yariv, Real-time image subtraction and exclusive or operation using a self-pumped phase conjugate mirror, Appl. Phys. Lett., 48, Jan. 1986

    Google Scholar 

  24. J. Marburger, Optical pulse integration and chirp reversal in degenerate four-wave mixing, Appl. Phys. Lett., 32, March 1978

    Google Scholar 

  25. A. Marrakchi, A. Tanguay, J. Yu and D. Psaltis, Physical characterization of the photorefractive incoherent to coherent optical converter, Opt. Eng., 24, Jan. 1985

    Google Scholar 

  26. E. Ochoa, L. Esselink and J. Goodman, Real-time intensity inversion using two-wave mixing in photorefractive Bi12Si020, Appl. Opt., 24, 1985

    Google Scholar 

  27. S. Odulov and M. Soskin, Correlation analysis of images under degenerate four-wave mixing in colliding beams, Sov. Phys. Dokl., 25, May 1980

    Google Scholar 

  28. T. O’Meara and A. Yariv, Time-domain signal processing via fourwave mixing in nonlinear delay lines, Opt. Eng., 21, March 1982

    Google Scholar 

  29. Y. Owechko, G. Dunning, E. Marom and B. Soffer, A holographic associative memory with nonlinearities in the correlation domain, Appl. Opt., 26, March 1987

    Google Scholar 

  30. D. Pepper, J. Yeung, D. Fekete and A. Yariv, Spatial convolution and correlation of optical fields via degenerate four-wave mixing, Opt. Lett., 3, 1978

    Google Scholar 

  31. M. Petrov, S. Miridonov, S. Stepanov and V. Kulikov, Light diffraction and nonlinear image processing in electrooptic Bi12Si020 crystals, Opt. Comm., 31, Dec. 1979

    Google Scholar 

  32. L. Pichon and J. Huignard, Dynamic joint-fourier-transform correlator by bragg diffraction in photorefractive Bi12SiO20 crystals, Opt. Comm., 36, Feb. 1981

    Google Scholar 

  33. D. Psaltis, J. Yu and J. Hong, Bias-free time integrating optical correlator using a photorefractive crystal, Appl. Opt., 24, Nov. 1985

    Google Scholar 

  34. D. Psaltis and N. Farhat, Optical information processing based on an associative-memory model of neural nets with thresholding and feedback, Opt. Lett., 10, Feb. 1985

    Google Scholar 

  35. D. Psaltis, J. Hong, and S. Venkatest, Shift invariance in optical associative memories, Proceedings of SPIE Optical Computing, 625, Jan. 1986

    Google Scholar 

  36. D. Psaltis. D. Brady and K. Wagner, Adaptive optical networks using photorefractive crystals, Appl. Opt., 51, May 1988

    Google Scholar 

  37. D. Psaltis and D. Brady, A photorefractive integrated otpical vector matrix multiplier, SPIE Proceedings, 825, Aug. 1987

    Google Scholar 

  38. H. Rajbenbach, Y. Fainmam and S. Lee, Optical implementation of an iterative algorithm for matrix inversion, Appl. Opt., 26, March 1987.

    Google Scholar 

  39. A. Rebane and R. Kaarli, Picosecond pulse shaping by photochemical time-domain holography, Chem. Phys. Lett., 101, Oct. 1983

    Google Scholar 

  40. K. Sayano, G. Rakuljic and A. Yariv, Thresholding semilinear phase conjugate mirror, Opt. Lett., 13, Feb. 1988

    Google Scholar 

  41. Y. Shi, D. Psaltis, A. Marrakchi and A. Tanguay, Photorefractive incoherent-to-coherent optical converter, Appl. Opt., 22, Dec. 1983

    Google Scholar 

  42. B. Soffer, G. Dunning, Y, Owechko and E. Marom, Associative holographic memory with feedback using phase-conjugate mirrors, Opt. Lett., 11, Feb. 1986

    Google Scholar 

  43. Y. Tomita, R. Yahalom and A. Yariv, Real-time image subtraction with the use of wave polarization and phase conjugation, Appl. Phys. Lett., 52, Feb. 1988

    Google Scholar 

  44. K. Wagner and D. Psaltis, Multilayer optical learning networks, Appl. Opt., 26, Dec. 1987

    Google Scholar 

  45. H. White, N. Alridge and I. Lindsay, Digital and analogue holographic associative memories, Opt. Eng., 27, Jan. 1988

    Google Scholar 

  46. J. White and A. Yariv, Real-time image processing via four-wave mixing in a photorefractive medium, Appl. Phys. Lett., 37, July 1980

    Google Scholar 

  47. A. Yariv, Y. Tomita and Kazuo Kyuma, Theoretical model for modal dispersal of polarization information and its recovery by phase conjugation, Opt. Lett, 11, Dec. 1986

    Google Scholar 

  48. A. Yariv and S. Kwong, Associative memories based on messagebearing optical modes in phase-conjugate resonators, Opt. Lett., 11, March 1986

    Google Scholar 

  49. A. Yariv, S. Kwong, and K. Kyuma, Demonstration of an all-optical associative holographic memory, Appl. Phys. Lett., 48, April 1986

    Google Scholar 

  50. P. Yeh and A. Chiou, Optical matrix-vector multiplication through four-wave mixing in photorefractive media, Opt. Lett., Vol. 12, p. 138, February 1987

    Article  ADS  Google Scholar 

  51. J. Yu, J. Hong and D. Psaltis, Photorefractive time integrating correlator and adaptive processor, OSA Topical Meeting on Photorefractives and Applications, L.A. Ca 1987

    Google Scholar 

  52. A. Zuikov, V. Samartsev and R. Usmanov, Correlation of the shape of light echo signals with the shape of the excitation pulses, JETP Lett., 32, Aug. 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Dunning, G.J., Giuliano, C.R. (1990). Selected References on Optical Computing Using Phase Conjugation. In: Martellucci, S., Chester, A.N. (eds) Nonlinear Optics and Optical Computing. Ettore Majorana International Science Series, vol 49. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0629-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0629-0_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7900-6

  • Online ISBN: 978-1-4613-0629-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics