Skip to main content

Butyric Acid Modulates Developmental Globin Gene Switching in Man and Sheep

  • Chapter
Book cover Molecular Biology of Erythropoiesis

Abstract

The developmental switch from production of fetal (Υ) to adult (ß) globin occurs on a normally set biologic clock which proceeds even if the adult (ß) globin genes are defective. Preventing or reversing the globin gene switch would be beneficial for subjects with abnormal ß globin genes. We have now identified a class of agents which, when present in elevated plasma concentrations during gestation, appears to inhibit the Υ → ß globin gene switch in developing humans. Further investigation has shown that butyric acid and related compounds can increase Υ globin and decrease ß globin expression in erythroid cells cultured from subjects with diseases of abnormal ß globin. Butyrate compounds were therefore infused in an in vivo fetal animal model, and the globin switch was inhibited in most and reversed in some fetal lambs. These data suggest that inhibiting expression of abnormal ß globin genes may be possible in future generations. Histone modification may be a mechanism of action involved.

The developmental switch from production of γ globin to β globin results in significant morbidity when the β globin genes are defective. The globin switch has therefore been extensively studied, appearing to be set on a biologic clock and proceeding despite the site of blood production and solely on the basis of gestational age1. We previously found that this developmental gene switch is delayed in human fetuses developing in the presence of maternal diabetes2. A number of metabolites present in abnormal concentrations in these infants were therefore tested for effects on globin expression. One metabolite, a amino-n-butyric acid (ABA), was found to enhance γ globin and inhibit β globin expression in cultured neonatal erythroid cells3. Further investigation now shows that ABA, sodium butyrate and similar compounds can enhance γ,globin

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. . Wood, W.G., C. Bunch, S. Kelly, Y. Gunn, G. Breckon. 1985. Control of hemoglobin switching by a developmental clock? Nature 313: 320.

    Article  PubMed  CAS  Google Scholar 

  2. . Perrine, S.P., M.F. Greene, D.V. Faller. 1985. Delayed in the fetal globin switch in infants or diabetic mothers. N. Eng. J. Med. 312: 334.

    Article  CAS  Google Scholar 

  3. . Perrine, S.P., B.A. Miller, M.F. Greene, R.A. Cohen, N. Cook, C. Shackleton, D.V. Faller. 1987. Butyric acid analogues augment y globin gene expression in neonatal erythroid progenitors. Biochem. Biophys. Res. Commun. 148: 694.

    CAS  Google Scholar 

  4. . Perrine, S.P., B.A. Miller, D.V. Faller, R.A. Cohen, E.P. Vichinsky, D. Hurst, B.H. Lubin, Th. Papayannopoulou. 1989. Sodium butyrate enhances fetal globin gene expression in erythroid progenitors of patients with HbSS and ß thalassemia. Blood 74: 454.

    PubMed  CAS  Google Scholar 

  5. Perrine, S.P., B.A. Miller, D.V. Faller, R.A. Cohen, E.P. Vichinsky, D. Hurst, B.H. Lubin, and Th. Papayannopoulou. 1989. Sodium butyrate enhances fetal globin gene expression in erythroid progenitors of patients with HbSS and S thalassemia. Blood 74: 454.

    Google Scholar 

  6. . Swerdlow, P.S., A. Varsavsky. 1983. Affinity of HMG17 for a mononucleosome is not influenced by the presence of ubiquitin-H2A semihistone but strongly depends on DNA fragment size. Nucleic Acids Res. 11: 387.

    Article  PubMed  CAS  Google Scholar 

  7. . Perrine, S.P., A. Rudolph, D.V. Faller, C. Roman, R.A. Cohen, S-J. Chen, Y.W. Kan. 1988. Butyrate infusion in the ovine fetus delay the biologic clock for globin gene switching. Proc. Natl. Acad. Sci. USA 85: 8540.

    Article  PubMed  CAS  Google Scholar 

  8. . Wood, W.G., M.E. Pembrey, G. Serjeant, R.P. Perrine, D.J. Weatherall. 1980. Haemoglobin F synthesis in sickle cell anaemia: A comparison of Saudi Arab cases with those of African origin. Br. J. Haematol. 45: 431.

    Article  PubMed  CAS  Google Scholar 

  9. . Reed, L.J., T.B. Bradley Jr., H.M. Ranney. 1965. The effect of amelioration of anemia by the synthesis of fetal hemoglobin in sickle cell anemia. Blood 25: 37.

    PubMed  CAS  Google Scholar 

  10. . Nagel, R.L., R.M. Bookchin, J. Johnson, D. Labie, H. Wajcman, W.A. Isaac-Sodeye, G.R. Honig, G. Schiliro, J.H. Crookston, K. Matsutomo. 1979. Structural bases of the inhibitory effects of hemoglobin F and A2 on the polymerization of hemoglobin S. Proc. Natl. Acad. Sci. USA 75: 670.

    Article  Google Scholar 

  11. . Dover, G.J., S.H. Boyer, S. Charache, K. Heintzelman. 1978. Individual variation in the production and survival of F cells in sickle cell disease. N. Engl. J. Med. 299: 1428.

    Article  PubMed  CAS  Google Scholar 

  12. . Burns, L.J., J. Glauber, G.D. Ginder. 1984. Butyrate induces selective gene transcription in injected Xeonopus oocytes: En¬hancement by sodium butyrate. Embo J. 3: 2787.

    Google Scholar 

  13. . Constantoulakis, P., Th. Papayannopoulou, G. Stamatoyannopoulos. 1988. a-Amino-n-butyric acid stimulates fetal hemoglobin in the adult. Blood 22: 1961.

    Google Scholar 

  14. . Riggs, M.G., R.G. Wittaker, J.R. Neuman, V.W. Ingram. 1977. N-Butyrate causes histone modification in HeLa and Friend erythro-leukemia cells. Nature 268: 462.

    Article  PubMed  CAS  Google Scholar 

  15. . Kruh, J. 1982. Effects of sodium butyrate, a new pharmacologic agent on cells in culture. Molec. Cell Biochem. 42: 65.

    Google Scholar 

  16. . Darzynkiewicz, Z., F. Tráganos, S-B. Xue, M.R. Melamed. 1981. Effect of n-butyrate on cell cycle progression and in situ chromatin structure of L1210 cells. Exp. Cell. Res. 136: 279.

    CAS  Google Scholar 

  17. . Prasad, K.N. 1980. Butyric acid, a small fatty acid with diverse biological functions. Life Sciences 27: 1351.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Perrine, S.P. et al. (1989). Butyric Acid Modulates Developmental Globin Gene Switching in Man and Sheep. In: Ascensao, J.L., Zanjani, E.D., Tavassoli, M., Levine, A.S., MacKintosh, F.R. (eds) Molecular Biology of Erythropoiesis. Advances in Experimental Medicine and Biology, vol 271. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0623-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0623-8_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7897-9

  • Online ISBN: 978-1-4613-0623-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics