Skip to main content
  • 169 Accesses

Abstract

Fusion technology raises a number of new problems to be solved that require new materials or the adaptation of known materials which allow proper operation in the new conditions. The material requirements will evolve with the design of the plant and may change significantly from NET to DEMO /1/. However there are many common aspects, typical of the Tokamak reactors. Intense magnetic fields, superconducting coils, cryogenic temperatures, high vacuum, intense neutron fluxes, pulsed operation, thermal gradients and stresses, are a few of the specific features of the fusion environment. The materials required to operate in this field must provide the best performance, the maximum safety and their cost must be acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.Schiller, and J. Nihoul, “Projected materials requirements for the NET and for long term tokamak-based DEMO fusion devices”. Int. Conf. on Fusion Reactor Materials, Karlsruhe, October 4–8, 1987.

    Google Scholar 

  2. P.N. Haubenreich., S. Shimamoto., P. Komarek., G. Vecsey., “International developement of superconducting magnets for fusion power“ Fusion Technology 15, 2, 909 (March 1989).

    Google Scholar 

  3. C.D. Henning., J.R. Miller.., “Design considerations for ITER magnet systems”.Fusion Technology 15, 2, 915 (March 1989).

    Google Scholar 

  4. A. Laila. El-Guebaly, M.E. Sawan., “Tungsten versus steel in inboard shield of ITER: impact on magnet damage, reactor size and cost”Fusion Technology 15, 2, 881 (March 1989).

    Google Scholar 

  5. C.E. Johnson., K.R. Kummerer and E. Roth., “Ceramic breeder materials”Journal of Nuclear Materials 155–157 188(1988).

    Google Scholar 

  6. M. A. Abdou et al., “Modeling, Analysis, and Experiments for Fusion Nuclear Technology: FNT Progress Report, Modeling and FINESSE” UCLA-ENG-86–44, University of California, Los Angeles, January 1987.

    Google Scholar 

  7. D.L. Smith et al., “Blanket comparison and selection study”,ANL/FPP-84–1.

    Google Scholar 

  8. M. Abdou et al., “Summary of the ISFNT workshop on ITER”.Fusion Technology. 14, 3, 1399 (November 1988).

    Google Scholar 

  9. M. Dalle Donne et al., “Pebble bed canister: the Karlsruhe ceramic breeder blanket design for NET”.Fusion Technology 14 357 (November, 1988).

    Google Scholar 

  10. M. C. Billone., W. T. Grayhack., “Mechanical performance of fusion solid breeder and multiplier materials”.Fusion Technology 15, 2, 1205 (1989).

    Google Scholar 

  11. O. Kranert., H.M. Kottowski., C. Savatteri., “Large scale Lil7Pb83/water interaction studies”.Fusion Technology 15, 2, 973 (1989).

    Google Scholar 

  12. W. Daenner et al., “Status of NET shielding blanket development”, 15th SOFT, Utrecht 19–23 September, 1988.

    Google Scholar 

  13. C. Ponti., “Recycling and shallow land burial as goals for fusion reactor materials development,Fusion Technology 13, 157, (January 1988).

    Google Scholar 

  14. G. Vieider., M. Harrison. and F. Moons., “Net plasma facing components”, 15th SOFT, Utrecht 19–23 September, 1988.

    Google Scholar 

  15. M. Chazalon., W. Daenner. and B., “Blanket Testing in NET”, 15th SOFT, Utrecht 19–23 September, 1988.

    Google Scholar 

  16. S. Piet., “Safety and environmental challanges in materials selection”, IAEA-Yalta 26.5–6.6/1986.

    Google Scholar 

  17. C. Ponti., “Disposal of radioactive waste in Europe: norms and practice” Tech. Note I 8908 (January 1989).

    Google Scholar 

  18. “Panel report on low activation materials for fusion applications”. UCLA report to DOE, March, 1983.

    Google Scholar 

  19. G. Casini., C. Ponti., P. Rocco., “Environmental aspects of fusion reactors” EUR 10728 (1986).

    Google Scholar 

  20. L. Giancarli & G.J. Butterworth., “The implications of dose rate limits for the recycling of fusion reactor first wall structural material” XIV SOFT, Avignon September, 1986.

    Google Scholar 

  21. C. Ponti., “Fusion reactor materials to minimize long living radioactive waste” ISFNT, Tokyo 10–15 April, 1988.Fusion Engineering & Design

    Google Scholar 

  22. S. Fetter., E.T. Cheng, F.M. Mann., “Long term radioactivity in fusion reactors”Fusion Engineering & Design 6, 123 (1988).

    Google Scholar 

  23. P. Fenici et al., “Properties of Cr-Mn austenitic stainless steels for fusion reactor applications”.Nuclear Engineering & Design/Fusion 1 2, 167 (1984).

    Article  Google Scholar 

  24. G. Piatti., D. Boerman. & J. Heritier, “Developement of low activation Cr-Mn austenitic steels for fusion reactor applications”. 15th SOFT, Utrecht 19–23 September, 1988.

    Google Scholar 

  25. G.J, Butterworth, K.W Tupholme, J. Orr, D. Dulieu, “A study of the prospects for development of low activation martensitic steels for first wall and blanket structures in fusion reactors”. CLM-R264 (1986).

    Google Scholar 

  26. J.P.Davis and G.M. Smith., “Radiological aspects of the management of solid waste from the operation of D-T fusion reactors” NRPB-R210 (1987).

    Google Scholar 

  27. K.R. Smith and G.J. Butterworth., “The radiological impact of fusion waste disposal” IAEA Technical meeting on Fusion Reactor Safety, Jackson, Wyoming, 4–7 April, 1989.

    Google Scholar 

  28. W. Gulden et al., “Waste management for NET”. 15th SOFT, Utrecht 19–23 September 1988.

    Google Scholar 

  29. R.A. Forrest & D.A.J. Endacott., “Activation data for some elements relevant to fusion reactors”. AERE R-13402 (1989).

    Google Scholar 

  30. L. Giancarli., “On the radiological behaviour of first wall fusion structural materials”. CLM-R275 (1987).

    Google Scholar 

  31. S.J. Piet, R. M. Neilson Jr., G.R. Smolik, G.A. Reimann, “Initial experimental investigation of the elemental volatility from steel alloys for fusion safety application”. EGG-ESP-8459 (April, 1989).

    Google Scholar 

  32. C. Ponti E. Ruedl., G. Casini., “Release of Mn radioisotopes from fusion reactor steels”. 15th SOFT, Utrecht 19–23 September, 1988.

    Google Scholar 

  33. P. Hokkeling, W. van Witzenburg, “Developement of low activation vanadium alloys for fusion reactor application”. 15th SOFT, Utrecht 19–23 September, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Ponti, C. (1990). Special Materials for Fusion Reactors. In: Brunelli, B., Knoepfel, H. (eds) Safety, Environmental Impact, and Economic Prospects of Nuclear Fusion. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0619-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0619-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7895-5

  • Online ISBN: 978-1-4613-0619-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics