Differential Effects of Sodium and Carbon Monoxide on the H2-and Glucose-Dependent Growth of the Thermophilic Acetogen AcetogeniumKivui

  • Hsuichin Yang
  • Harold L. Drake
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 54)


Cultures of A. kivui could not be maintained at the expense of H2 in sodium-deficient medium (0.2 mM Na). Glucose cultures did not display such a dependency on sodium. Neither lithium nor potassium replaced the sodium requirement of H2 cultures. In the absence of growth, formate became a major end product in sodium-deficient H2 cultures. Harmaline uncoupled acetogenesis from growth in H2 cultures, while other metabolic inhibitors blocked H2-dependent growth and acetogenesis. Harmaline did not inhibit glucose-dependent growth but stimulated higher acetate yields per unit biomass formed. Carbon monoxide (CO) was inhibitory to glucose cultures but was stimulatory to H2 cultures.


Metabolic Inhibitor Unit Biomass Acetogenic Bacterium Glucose Culture Autotrophic Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Wood, H.G., Ragsdale, S.W., Pezacka, E. (1986) FEMS Microbiol. Lett. 43: 345Google Scholar
  2. Ljungdahl, L.G. (1986) Annu. Rev. Microbiol. 40: 415Google Scholar
  3. Fuchs, G. (1986) FEMS Microbiol. Lett. 39: 181Google Scholar
  4. Perski, H.J., Moll, J., Thauer, R.K. (1981) Arch. Microbiol. 130: 319Google Scholar
  5. Perski, H.J., Schönheit, P., Thauer, R.K. (1982) FEMSGoogle Scholar
  6. Lett. 143: 323Google Scholar
  7. Müller, V., Blaut, M., Gottschalk, G. (1987) Eur. J. Biochem. 162: 461Google Scholar
  8. Schönheit, P., Beimborn, D.B. (1985) Arch. Microbiol. 142: 354Google Scholar
  9. Gottschalk, G. (1989) In: H.G. Schlegel and B. Bowien (ed), Autotrophic Bacteria. Science Tech Publishers, MadisonGoogle Scholar
  10. Terracciano, J., Schreurs, W.J.A., Kashket, E.R. (1987) Appl. Environ. Microbiol. 53: 782Google Scholar
  11. Lundie, L.L., Jr., Yang, H., Heinonen, J.K., Dean, S.I., Drake, H.L. (1988) J. Bacteriol. 170: 5705Google Scholar
  12. Yang, H., Daniel, S.L., Hsu, T., Drake, H.L. (1989) Appl. Environ. Microbiol. 590: 24Google Scholar
  13. Geerligs, G., Schönheit, P., Diekert, G. (1989) FEMS Microbiol. Lett. 57: 253Google Scholar
  14. Leigh, J.A., Mayer, F., Wolfe, R.S. (1981) Arch. Microbiol. 129: 275Google Scholar
  15. Savage, M.D., Drake, H.L. (1986) J. Bacteriol. 165: 315Google Scholar
  16. Hugenholtz, J., Ljungdahl, L.G. (1989) J. Bacteriol. 171: 2873Google Scholar
  17. Boone, D.R., Johnson, R.L., Liu, Y. (1989) Appl. Environ. Microbiol. 55: 1735Google Scholar

Copyright information

© Plenum Press 1990

Authors and Affiliations

  • Hsuichin Yang
    • 1
  • Harold L. Drake
  1. 1.Microbial Physiology Laboratories, Department of BiologyThe University of Mississippi UniversityUSA

Personalised recommendations