Electron Carrier Proteins in Desulfovibrio Vulgaris Miyazaki

  • T. Yagi
  • M. Ogata
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 54)


Desulfovibrio vulgaris Miyazaki, a sulfate-reducing bacterium, resembles the type strain, D. vulgaris Hildenborough, in the amino acid sequences of cytochrome c3 (Shinkai et al., 1980), cytochrome c-553 (Nakano et al., 1983; Van Rooijen et al., 1989), and rubredoxin (Shimizu et al., 1989), but differs in morphology (Kobayashi and Skyring, 1982) and in the characteristics of periplasmic hydrogenase (Yagi et al., 1978). D. vulgaris Miyazaki lives on lactate and sulfate. The overall reaction to yield energy is the oxidation of lactate with sulfate 2 CH3 CHOHCOO¯ + S04 → 2 CH3 COO¯ + 2 HCO3¯ + H2S ΔG=-l60kJ This reaction is composed of two reaction paths, the lactate degradation path and the sulfate reduction path. The lactate degradation path is composed of four reactions, and results in the production of ATP by the substrate level phosphorylation (Ogata et al., 1981; Ogata and Yagi, 1986; Ogata et al., 1988).


Acetyl Phosphate Standard Redox Potential Porphobilinogen Deaminase Protoporphyrinogen Oxidase Adenosine Phosphosulfate Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Batlle, A. M. del C., Benson, A., and Rimington, C., 1965, Purification and properties of coproporphyrinogenase Biochem. J., 97: 731.PubMedGoogle Scholar
  2. Benosmann, H., Asso, M., Bertrand, p., Yagi, T., and Gayda, J.-P., 1989, EPR study of the redox interactions in cytochrome C3 from Desulfovibrio vulgaris Miyazaki, Eur. J. Biochem., 182: 51.PubMedCrossRefGoogle Scholar
  3. Bogorad, L., 1962, Porphyrin synthesis, Methods Enzymol., 5: 885.CrossRefGoogle Scholar
  4. Gayda, J. P., Yagi, T., Benosman, H., and Bertrand, P., 1987, EPR redox study of cytochrome c3 from Desulfovibrio vulgaris Miyazaki, FEBSLett. 217: 57.CrossRefGoogle Scholar
  5. Higuchi, Y., Kusunoki, M., Matsuura, Y., Yasuoka, N., and Kakudo, M., 1987, Refined structure of cytochrome C3 at 1.8Å resolution, J. Mol. Biol., 172: 109.PubMedCrossRefGoogle Scholar
  6. Higuchi, Y., Inaka, K., Yasuoka, N., and Yagi, T., 1987, Isolation and crystallization of high molecular weight cytochrome from Desulfovibrio vulgaris Hildenborough Biochim. Biophys. Acta, 911: 341.CrossRefGoogle Scholar
  7. Jacobs, N. J., and Jacobs, J. M., 1975, Pumarate as alternate electron acceptor for the late steps of anaerobic heme synthesis in Escherichia coli, Biochem. Biophys. Res. Commun., 65: 435Google Scholar
  8. Jacobs, N. J., and Jacobs, J. M., 1975, Nitrate, fumarate, and oxygen as electron acceptors for a late step in microbial heme synthesis Biochim. Biophys. Acta., 449: 1PubMedCrossRefGoogle Scholar
  9. Kobayashi, K., and Skyring, G. w., 1982, Ultrastructural and biochemical characterization of Miyazaki strains of Desulfovibrio vulgaris, J. Gen. Appl. Microbiol., 28: 45.CrossRefGoogle Scholar
  10. Loufti, M., Guerlesquin, F., Bianco, P., Haladjian, J., and Bruschi, M., 1989, Comparative studies of polyhemic cytochrome c isolated from Desulfovibrio vulgaris (Hildenborough) and Desulfovibrio desulfuricans (Norway) Biochem. Biophys. Res. Commun., 159: 670.CrossRefGoogle Scholar
  11. Nakano, K., Kikumoto, Y., and Yagi, T., 1983, Amino acid sequence of cytochrome c-553 from Desulfovibrio vulgaris Miyazaki J. Biol. Chem., 258: 12409.Google Scholar
  12. Niki, K., Yagi, T., Inokuchi, H., and Kimura, K., 1979, Electrochemical behavior of cytochrome C3 of Desulfovibrio vulgaris strain Miyazaki, on the mercury electrode J. Am. Chem. Soc., 101: 3335.CrossRefGoogle Scholar
  13. Ogata, M., Akihara, K., and Yagi, T., 1981, D-Lactate dehydrogenase of Desulfovibrio vulgaris, J. Biochem., 89: 1423.PubMedGoogle Scholar
  14. Ogata, M., and Yagi, T., 1986, Pyruvate dehydrogenase and the path of lactate degradation in Desulfovibrio vulgaris Miyazaki F, J. Biochem., 100: 311.PubMedGoogle Scholar
  15. Ogata, M., Kondo,, S., Okawara, N., and Yagi, T., 1988, Purification and characterization of ferredoxin from Desulfovibrio vulgarisMiyazaki, J. Biochem., 103: 121.PubMedGoogle Scholar
  16. Okawara, N., Ogata,, M., Yagi, T., Wakabayashi, S., and Matsubara, H., 1988a, Amino acid sequence of ferredoxin I from Desulfovibrio vulgaris Miyazaki, J. Biochem., 104: 196.Google Scholar
  17. Okawara, N., Ogata, M., Yagi, T., Wakabayashi, S., and Matsubara, H., 1988b, Characterization and complete amino acid sequence of ferredoxin,,II from Desulfovibrio vulgaris Miyazaki, Biochimie, 70: 1815.CrossRefGoogle Scholar
  18. Poulson, R., 1976, The enzymic conversion of protoporphyrinogen IX to protophyrin IX in mammalian mitochondria, J. Biol. Chem., 251: 3730.Google Scholar
  19. Sano, S., and Granick, S., 1961, Mitochondrial coproporphyrinogen oxidase and protoporphyrin formation, J. Biol. Chem, 236: 1173.PubMedGoogle Scholar
  20. Shemin, D., 1970, δ-Aminolevulinic acid dehydratase, Methods Enzymol., 17A:205.CrossRefGoogle Scholar
  21. Shimizu, F., Ogata, M., Yagi, T., Wakabayashi, S., and Matsubara, H., 1989, Amino acid sequence and function of rubredoxin from Desulfovibrio vulgaris Miyazaki, Biochimie, 71: in press.Google Scholar
  22. Shikai, W., Hase, T., Yagi, T., and Matsubara, H., 1980, Amino acid sequence of cytochrome C3 from Desulfovibrio vulgaris Miyazaki, J. Biochem, 87: 1747.PubMedGoogle Scholar
  23. Tabushi, I., Nishiya, T., Yagi, T., and Inokuchi, H., 1983, Kinetic atudy on the successive four-step reduction of cytochrome c3, J. Biochem, 94: 1375.PubMedGoogle Scholar
  24. Thomas, P. E., Ryan, D., and Levin, W., 1976, An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels, Anal. Biochem, 70: 1815.PubMedCrossRefGoogle Scholar
  25. Tsuji, K., Yagi, T., 1980, Significance of hydrogen burst from growing cultures of Desulfovibrio vulgaris, Miyazaki, and the role of hydrogenase and cytochrome C3 in energy production system, Arch. Microbiol., 125:35.Google Scholar
  26. Urata, G., and Granick, H., 1963, Biosynthesis of α-aminoketones and the metabolism of aminoacetone J. Biol. Chem, 238: 811.PubMedGoogle Scholar
  27. Van Rooijen, G. J. H., Bruschi, M., and Voordouw, G., 1989, Cloning and sequencing of the gene encoding cytochrome C553 from Desulfovibrio vulgaris Hildenborough, J. Bacteriol., 171: 3575.PubMedGoogle Scholar
  28. Verma, A. L., Kimura, K., Nakamura, A., Yagi, T., Inokuchi, H., and Kitagawa, T., 1988, Resonance Raman studies of hydrogenase-catalyzed reduction of cytochrome C3 by hydrogen. Evidence for heme-heme interactions J. Am. Chem. Soc., 110: 6617.CrossRefGoogle Scholar
  29. Yagi, T., 1979, Purification and properties of cytochrome c-553, an electron acceptor for formate dehydrogenase of Desulfovibrio vulgaris, Miyazaki, Biochim. Biophys. Acta, 548: 96.PubMedCrossRefGoogle Scholar
  30. Yagi, T., 1984, Spectral and kinetic abnormality during the reduction of cytochrome C3 catalyzed by hydrogenase with hydrogen Biochim. Biophys. Acta, 767:288.PubMedCrossRefGoogle Scholar
  31. Yagi, T., Honya, M., and Tamiya, N., 1968, Purification and properties of hydrogenase of different origins, Biochim. Biophys. Acta, 153: 699.Google Scholar
  32. Yagi, T., Endo, A., and Tsuji, K., 1978, Properties of hydrogenase from particulate fraction of Desulfovibrio vulgaris, in: “Hydrogenases: Their Catalytic Activity, Structure and Function,” H. G. Schlegel and K. Schneider, eds., p. 107, Erich Goltze, Göttingen.Google Scholar

Copyright information

© Plenum 1990

Authors and Affiliations

  • T. Yagi
    • 1
  • M. Ogata
    • 1
  1. 1.Department of ChemistryShizuoka UniversityShizuokaJapan

Personalised recommendations