Skip to main content

Abstract

Hydrogen is an important intermediate in the degradation of organic material. The oxidation of hydrogen by methanogens creates a low hydrogen partial pressure, which is essential for the breakdown of e. g. propionate and butyrate and which may cause a shift in fermentation products of by hydrogen producing fermentative bacteria. When hydrogen is removed in methanogenic environments, fermentative bacteria, which dispose part of their reducing equivalents as molecular hydrogen form more oxidized and less reduced organic products. In addition, the degradation of reduced organic compounds is only possible in the presence of methanogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Barker, H.A., 1981, Amino acid degradation by anaerobic bacteria, Ann. Rev. Biochem., 50:23

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M.M., 1976, A rapid and sensitive method for the Quntitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72:248

    Article  PubMed  CAS  Google Scholar 

  • Brandis-Heep, A., Gebhardt, N.A., Thauer, R.K., Widdel, F., and Pfennig, N., 1983, Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei. 1. Demonstration of all enzymes required for the operation of the citric acid cycle, Arch. Microbiol., 136:222

    Article  Google Scholar 

  • Buckel, W., and Barker, H.A., 1974, Two pathways of glutamate fermentation by anaerobic bacteria, J. Bact., 117: 1248

    PubMed  CAS  Google Scholar 

  • Cheng Guansheng, Skrabanja, A.T.P., and Stams, A.J.M., 1989, Isolation and characterization of a thermophilic anaerobic bacterium converting succinate to propionate, In preparation

    Google Scholar 

  • Hansen, T.A., and Stams, A.J.M., 1989, A rod-shaped, Gram-negative, propiogenic bacterium with a wide substrate range and the ability to fix nitrogen. Arch. Microbiol., submitted

    Google Scholar 

  • Hsiang, M.W., and Bright, H.J., 1969, ß-methylaspartase from Clostridium tetanomorphum, in: Lowenstein, J.M., (ed), Methods in Enzymology, 13: 347

    Google Scholar 

  • Huser, B., 1981, Methanbildung aus Acetat, PhD thesis, Zurich

    Google Scholar 

  • Laanbroek, H.J., Abee, T., and Voogd, I.L., 1982, Alcohol conversions by Desulfobulbus propionicus Lindhorstin the presence and absence of sulfate and hydrogen,Alcohol conversions by Desulfobulbus propionicus Lindhorstin the presence and absence of sulfate and hydrogen Arch. Microbiol.., 133: 178

    Article  CAS  Google Scholar 

  • Lerud, R.F., and Whiteley, H.R., 1971, Purification and properties of a α-ketoglutarate reductase from Micrococcus aerogenes, J. Bact. 106: 571

    Google Scholar 

  • Naaninga, H.J., and Gotschal, J.C., 1985, Aminoacid fermentation and hydrogen transfer in mixed cultures, FEMS Microb. Ecol., 31:261

    Article  Google Scholar 

  • Nanninga, H.J., Drent, W.J., and Gotschall J.C., 1987, Fermentation of glutamate by Selenomonas acidaminophila sp. nov.,Arch. Microbiol., 147;152

    Article  Google Scholar 

  • Odom, J.M., and Peck, H.P., 1981, Localization of dehydrogenases, reductases and electron transfer components in the sulfate reducing bacterium Desulfovibrio gigas, J. Bacteriol., 147:161

    PubMed  CAS  Google Scholar 

  • Schink, B., 1984, Fermentation of 2,3-butanol by Pelobacter carbinolycussp. nov. and Pelobacter propionicusand evidence for propionate formation from C2 - compounds, Arch, microbiol., 137: 33

    Article  CAS  Google Scholar 

  • Schweiger, G., and Buckel, W., 1984, On the degradation of (R)-lactate in the fermentation of alanine to propionate by Clostridium propionicum, FEBS Lett., 171: 79

    Article  PubMed  CAS  Google Scholar 

  • Skrabanja, A.T.P., and Stams, A.J.M., 1989, Pathways of glutamate conversion in Acidaminobacter hydrogenoformans, In preparation

    Google Scholar 

  • Stams, A.J.M., Veenhuis, M., Weenk, G.H., Hansen, T.A., 1983, Occurence of polyglucose as a storage polymer in Desulfovibrio species and Desulfobulbus propionicus, Arch. Microbiol., 136:54

    Article  CAS  Google Scholar 

  • Stams, A.J.M., and Hansen, T.A., 1984, Fermentation of glutamate and other compounds by Acidaminobacter hydrogenoformansgen. nov. sp. nov., an obligate anaerobe isolated from black mud. Studies with pure cultures and mixed cultures with sulfate-reducing and methanogenic bacteria, Arch. Microbiol., 137: 329

    Article  CAS  Google Scholar 

  • Winnacker, E.L., and Barker, H.A., 1970, Purification and properties of a NAD-dependent glutamate dehydrogenase from Clostridium SB 4,Biochem. Biophys. Acta., 212:225

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press,New York

About this chapter

Cite this chapter

Skrabanja, A.T.P., Stams, A.J.M. (1990). Oxidative Propionate Formation by Anaerobic Bacteria. In: Bélaich, JP., Bruschi, M., Garcia, JL. (eds) Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Hydrogen Transfer. Federation of European Microbiological Societies Symposium Series, vol 54. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0613-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0613-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7892-4

  • Online ISBN: 978-1-4613-0613-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics