Abstract
The processes involved in the reduction of the oxides of sulphur, nitrogen and carbon compete for electrons. The free-energy changes involved, and the nature of the environment influence the outcome of this competition. Although methanogenesis is normally seen as the ultimate electron acceptor in anaerobic fermentations, methanogenesis may be competitively inhibited under some conditions, for example in anaerobic sediments containing high concentrations of sulphates (Widdel, 1986), or when methanogenic faecal slurries are supplemented with nitrates (Allison & Macfarlane, 1988).
Keywords
- Axenic Culture
- Clostridium Thermocellum
- Succinate Production
- Rumen Bacterium
- Anaerobic Fungus
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
REFERENCES
Allison, C, and Macfarlane, G.T., 1988, Effect of nitrate on methane production and fermentation by slurries of human faecal bacteria, J. Gen. Microbiol., 134: 1397–1405.
Allison, M. J., Robinson, I. M., and Baetz, A. L., 1979, Synthesis of α-ketoglutarate by reductive carboxylation of succinate in Veillonella, Selenomonasand Bacteriodessp., J. Bacteriol, 140: 980–986.
Bauchop, T., 1971, Mechanism of hydrogen formation in Trichomonas foetus, J. Gen. Microbiol, 68: 27–33.
Bauchop, T., and Mountfort, D. O., 1981, Cellulose fermentation by a rumen anaerobic fungus in both the absence and presence of rumen methanogens, Appl. Environ. Microbiol, 42, 1103–1110.
Boone, D. R., Johnson, R. L., and Liu, Y., 1989, Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake, Appl. Environ. Microbiol, 55, 1735–1741.
Carroll, E. J., and Hungate, R. E., 1957, Formate dissimilation and methane production in bovine rumen contents, Arch. Biochem. Biophys., 56: 525–536.
Chen, M., and Wolin, M. J., 1977, Influence of CH4 production by Methanobacterium ruminantium on the fermentation of glucose and lactate by Selenomonas ruminantium, Appl. Environ. Microbiol, 34: 756–759.
Chen, M., and Wolin, M.J., 1979, Effect of monensin and lasalocid-sodium on the growth of methanogenic and rumen saccharolytic bacteria, Appl. Environ. Microbiol. 38: 72–77.
Fiebig, K., and Gottschalk, G., 1983, Methanogenesis from choline by a co-culture of Desulfovibriosp. and Methanosarcina barkeri, Appl. Environ. Microbiol, 45: 161–168.
Gibson, G. R., Macfarlane, G. T., and Cummings, J. H., 1988, Occurrence of sulphate-reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in the large gut, J. Appl. Bacteriol, 65: 103–111.
Gottschalk, G., and Andreesen, J. R., 1979, Energy metabolism in anaerobes, in “Microbial Biochemistry,” J. R. Quayle ed., Int. Revs. Biochem., 21: Williams and Wilkins, Baltimore.
Hammes, W. P., Winter, J., and Kandler, O., 1979, The sensitivity of the pseudomurein-containing genus Methanobacteriumto inhibitors of murein synthesis, Archiv. for Microbiol, 123: 275–279.
Hillman, K., Lloyd, D., and Williams, A. G., 1988, Interactions between the methanogen Methanosarcina barkeriand rumen holotrich ciliate protozoa, Lett. Appl. Microbiol, 7: 49–53.
Holdeman, L. V., Kelley, R. W., and Moore, W. E. C, 1986, Bacteroidaceae, in “Bergey’s Manual of Systematic Bacteriology,” N. R. Kreig and J. G. Holt, eds., Williams and Wilkins, Baltimore.
Hungate, R. E., 1975, The rumen microbial ecosystem, Ann. Rev. Ecol. Syst., 6: 39–66.
Iannotti, E. L., Kafkewitz, D., Wolin, M. J., and Bryant, M. P., 1973, Glucose fermentation products of Ruminococcus albusgrown in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H2, J. Bacteriol., 114: 1231–1240.
Joblin, K., Campbell, G. P., Richardson, A. J., and Stewart, C. S., 1989, Fermentation of barley straw by anaerobic rumen bacteria and fungi in axenic culture and in co-culture with methanogens, Lett. Appl. Microbiol, (in the press).
Latham, M. J., and Legakis, N. J., 1976, Cultural factors influencing the utilisation or production of acetate by Butyrivibrio fibrisolvens, J. Gen. Microbiol, 94: 380–388.
Latham, M. J., and Wolin, M. J., 1977, Fermentation of cellulose by Ruminococcus flavefaciensin the presence and absence of Methanobacterium ruminantium, Appl. Environ. Microbiol, 34: 297–301.
Lovley, D. R., Greening, R. C, and Ferry, J. G., 1984, Rapidly growing rumen methanogenic organism that synthesises coenzyme M and has a high affinity for formate, Appl. Environ. Microbiol, 48: 81–87.
Lowe, S. E., Theodorou, M. K., and Trinci, A. P. J., 1987, Growth and fermentation of an anaerobic rumen fungus on various carbon sources and effect of temperature on development, Appl. Environ. Microbiol, 53: 1210–1215.
Macy, J., Probst, I., and Gottschalk, G., 1975, Evidence for cytochrome involvement in fumarate reduction and adenosine 5’ triphosphate synthesis by Bacteroides fragilisgrown in the presence of haemin, J. Bacteriol, 123: 436–442.
Miller, T. L., 1978, The pathway of formation of acetate and succinate from pyruvate by Bacteroides succinogenes, Arch. Microbiol, 117: 145–152.
Miller, T. L., and Wolin, M. J., 1973, Formation of hydrogen and formate by Ruminococcus albus, J. Bacteriol, 116: 836–846.
Miller, T. L., and Wolin, M. J., 1979, Fermentations by saccharolytic intestinal bacteria, Am. J. Clin. Nutr., 164–172.
Miller, T. L., and Wolin, M. J., 1981, Fermentation by the human large intestine microbial community in an in vitrosemicontinuous culture system, Appl. Environ. Microbiol, 42: 400–407.
Miller, T. L. and Wolin, M. J., 1985, Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen, Arch. Microbiol, 141: 116–122.
Miller, T. L., and Wolin, M. J., 1986, Methanogens in human and animal intestinal tracts, Syst. Appi Microbiol, 7: 223–229.
Miller, T. L., Wolin, M. J., and Kusel, E. A., 1986, Isolation and characterisation of methanogens from animal feces, Syst. Appl. Microbiol, 8: 234–238.
Miller, T. L., Wolin, M. J., Hongxue, Z., and Bryant, M.P., 1986, Characteristics of methanogens isolated from bovine rumen, Appl. Environ. Microbiol, 51: 201–202.
Miller, T. L., Wolin, M. J., Conway de Macario, E., and Macario, A. J. L., 1982, Isolation of Methanobrevibacter smithiifrom human feces, Appl. Environ. Microbiol, 43, 227–232.
Oppermann, R. A., Nelson, W. O., and Brown, R. E., 1957, In vitro studies on methanogenic rumen bacteria, J. Dairy Sci., 40: 779–788.
Patterson, J. A., and Hespell, R. B., 1979, Trimethylamine and methylamine as growth substrates for rumen bacteria and Methanosarcina barkeri, Curr. Microbiol, 3: 79–83.
Paynter, M. J. B., and Hungate, R. E., 1968, Characterisation of Methanobacterium mobilissp. nov., isolated from the bovine rumen, J. Bacteriol, 95: 1943–1951.
Prins, R. A., 1971, Isolation, culture, and fermentation characteristics of Selenomonas ruminantiumvar. bryantivar. n. from the rumen of sheep, J. Bacteriol, 105: 820–825.
Prins, R. A., and Van Hoven, W., 1977, Carbohydrate fermentation by the rumen ciliate Isotricha prostoma, Protistol, 13: 599–606.
Prins, R. A., Van Vught, F., Hungate, R. E., and Van Vorstenbosch, C. J. A. H. V., 1972, A comparison of strains of Eubacteriwn cellulosolvensfrom the rumen, Ant. Van Leeuwen., 38: 1–11.
Roustan, J. L., Touzel, J. P., Prensier, G., Dobourguier, H. C, and Albagnac, G., 1986, Evidence for a lytic phage for Methanothrixsp., in “Biology of Anaerobic Bacteria,” H. C. Dubourguier, ed., Elsevier, Amsterdam.
Russell, J. B., 1987, A proposed mechanism of monensin action in inhibiting ruminal bacterial growth: effects on flux and protonmotive force, J. Anim. Sci., 64: 1519–1525.
Salyers, A. A., 1984, Bacteroides of the human lower intestinal tract, Ann. Rev. Microbiol, 38: 293–313.
Scheifinger, C. C, Linehan, B., and Wolin, M. J., 1975, H2 production by Selenomonas ruminantiumin the absence and presence of methanogenic bacteria. Appl. Microbiol, 29, 480–483.
Smith, P. H, and Hungate, R. E., 1958, Isolation and characterisation of Methanobacterium ruminantiumn. sp., J. Bacteriol, 75: 713–718.
Stewart, C. S., and Bryant, M. P., 1988, The Rumen Bacteria, in “The Rumen Microbial Ecosystem,” P. N. Hobson, ed., Elsevier Applied Science, London.
Stewart, C. S., and Richardson, A. J., 1989, Enhanced resistance of anaerobic rumen fungi to the ionophores monensin and lasalocid in the presence of methanogenic bacteria, J. Appl. Bacteriol, 66: 85–93.
Thauer, R. K., and Kroger, A., 1984, Energy metabolism of two rumen bacteria with special reference to growth efficiency, in “Herbivore Nutrition in the Tropics and Sub-Tropics,” F. M. C. Gilchrist and R.I. Mackie, eds., The Science Press, South Africa.
Van Hoven, W., and Prins, R. A.,1977, Carbohydrate fermentation by the rumen citiate Dasytricha ruminantium. Protistol, 13: 599–606.
Vogels, G. D., Hoppe, W. F., and Stumm, C. K., 1980, Association of methanogenic bacteria with rumen ciliates, Appl. Environ. Microbiol, 40: 608–612.
Weimer, P.J., and Zeikus, J. G., 1977, Fermentation of cellulose and cellobiose by Clostridium thermocellumin the absence and presence of Methanobacterium thermoautotrophicum, Appl. Environ. Microbiol, 33: 289–297.
Widdel, F., 1986, Sulphate reducing bacteria and their ecological niches, in “Anaerobic Bacteria in Habitats Other Than Man,” E. M. Barnes and G. C. Mead, eds., Blackwell, Oxford.
Wolin, M. J., 1982, Hydrogen transfer in microbial communities, in “Microbial Interactions and Communities,”A. T. Bull and J. H. Slater, eds., Academic Press, London.
Wolin, M. J. and Miller, T., 1983, Carbohydrate fermentation, in “Human Intestinal Microflora in Health and Disease,” D. J. Hentges, ed., Academic Press, London.
Wolin, M. J., and Miller, T. L., 1988, Microbe-microbe interactions, in “The Rumen Microbial Ecosystem” P.N. Hobson, ed., Elsevier Applied Science, London.
Wood, T. M., Wilson, C. A., McCrae, S. I., and Joblin, K. N., 1986, A highly active extracellular cellulase from the anaerobic rumen fungus Neocallimastix frontalis, FEMS Microbiol Lett., 34: 37–40.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1990 Plenum Press, New York
About this chapter
Cite this chapter
Stewart, C.S., Richardson, A.J., Douglas, R.M., Rumney, C.J. (1990). Hydrogen Transfer in Mixed Cultures of Anaerobic Bacteria and Fungi with Methanobrevibacter Smithii. In: Bélaich, JP., Bruschi, M., Garcia, JL. (eds) Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Hydrogen Transfer. Federation of European Microbiological Societies Symposium Series, vol 54. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0613-9_10
Download citation
DOI: https://doi.org/10.1007/978-1-4613-0613-9_10
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4612-7892-4
Online ISBN: 978-1-4613-0613-9
eBook Packages: Springer Book Archive