Skip to main content

Hydrogen Transfer in Mixed Cultures of Anaerobic Bacteria and Fungi with Methanobrevibacter Smithii

  • Chapter

Part of the book series: Federation of European Microbiological Societies Symposium Series ((FEMS,volume 54))

Abstract

The processes involved in the reduction of the oxides of sulphur, nitrogen and carbon compete for electrons. The free-energy changes involved, and the nature of the environment influence the outcome of this competition. Although methanogenesis is normally seen as the ultimate electron acceptor in anaerobic fermentations, methanogenesis may be competitively inhibited under some conditions, for example in anaerobic sediments containing high concentrations of sulphates (Widdel, 1986), or when methanogenic faecal slurries are supplemented with nitrates (Allison & Macfarlane, 1988).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Allison, C, and Macfarlane, G.T., 1988, Effect of nitrate on methane production and fermentation by slurries of human faecal bacteria, J. Gen. Microbiol., 134: 1397–1405.

    PubMed  CAS  Google Scholar 

  • Allison, M. J., Robinson, I. M., and Baetz, A. L., 1979, Synthesis of α-ketoglutarate by reductive carboxylation of succinate in Veillonella, Selenomonasand Bacteriodessp., J. Bacteriol, 140: 980–986.

    PubMed  CAS  Google Scholar 

  • Bauchop, T., 1971, Mechanism of hydrogen formation in Trichomonas foetus, J. Gen. Microbiol, 68: 27–33.

    PubMed  CAS  Google Scholar 

  • Bauchop, T., and Mountfort, D. O., 1981, Cellulose fermentation by a rumen anaerobic fungus in both the absence and presence of rumen methanogens, Appl. Environ. Microbiol, 42, 1103–1110.

    PubMed  CAS  Google Scholar 

  • Boone, D. R., Johnson, R. L., and Liu, Y., 1989, Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake, Appl. Environ. Microbiol, 55, 1735–1741.

    PubMed  CAS  Google Scholar 

  • Carroll, E. J., and Hungate, R. E., 1957, Formate dissimilation and methane production in bovine rumen contents, Arch. Biochem. Biophys., 56: 525–536.

    Article  Google Scholar 

  • Chen, M., and Wolin, M. J., 1977, Influence of CH4 production by Methanobacterium ruminantium on the fermentation of glucose and lactate by Selenomonas ruminantium, Appl. Environ. Microbiol, 34: 756–759.

    PubMed  CAS  Google Scholar 

  • Chen, M., and Wolin, M.J., 1979, Effect of monensin and lasalocid-sodium on the growth of methanogenic and rumen saccharolytic bacteria, Appl. Environ. Microbiol. 38: 72–77.

    PubMed  CAS  Google Scholar 

  • Fiebig, K., and Gottschalk, G., 1983, Methanogenesis from choline by a co-culture of Desulfovibriosp. and Methanosarcina barkeri, Appl. Environ. Microbiol, 45: 161–168.

    PubMed  CAS  Google Scholar 

  • Gibson, G. R., Macfarlane, G. T., and Cummings, J. H., 1988, Occurrence of sulphate-reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in the large gut, J. Appl. Bacteriol, 65: 103–111.

    PubMed  CAS  Google Scholar 

  • Gottschalk, G., and Andreesen, J. R., 1979, Energy metabolism in anaerobes, in “Microbial Biochemistry,” J. R. Quayle ed., Int. Revs. Biochem., 21: Williams and Wilkins, Baltimore.

    Google Scholar 

  • Hammes, W. P., Winter, J., and Kandler, O., 1979, The sensitivity of the pseudomurein-containing genus Methanobacteriumto inhibitors of murein synthesis, Archiv. for Microbiol, 123: 275–279.

    Article  CAS  Google Scholar 

  • Hillman, K., Lloyd, D., and Williams, A. G., 1988, Interactions between the methanogen Methanosarcina barkeriand rumen holotrich ciliate protozoa, Lett. Appl. Microbiol, 7: 49–53.

    Article  Google Scholar 

  • Holdeman, L. V., Kelley, R. W., and Moore, W. E. C, 1986, Bacteroidaceae, in “Bergey’s Manual of Systematic Bacteriology,” N. R. Kreig and J. G. Holt, eds., Williams and Wilkins, Baltimore.

    Google Scholar 

  • Hungate, R. E., 1975, The rumen microbial ecosystem, Ann. Rev. Ecol. Syst., 6: 39–66.

    Article  CAS  Google Scholar 

  • Iannotti, E. L., Kafkewitz, D., Wolin, M. J., and Bryant, M. P., 1973, Glucose fermentation products of Ruminococcus albusgrown in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H2, J. Bacteriol., 114: 1231–1240.

    PubMed  CAS  Google Scholar 

  • Joblin, K., Campbell, G. P., Richardson, A. J., and Stewart, C. S., 1989, Fermentation of barley straw by anaerobic rumen bacteria and fungi in axenic culture and in co-culture with methanogens, Lett. Appl. Microbiol, (in the press).

    Google Scholar 

  • Latham, M. J., and Legakis, N. J., 1976, Cultural factors influencing the utilisation or production of acetate by Butyrivibrio fibrisolvens, J. Gen. Microbiol, 94: 380–388.

    CAS  Google Scholar 

  • Latham, M. J., and Wolin, M. J., 1977, Fermentation of cellulose by Ruminococcus flavefaciensin the presence and absence of Methanobacterium ruminantium, Appl. Environ. Microbiol, 34: 297–301.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., Greening, R. C, and Ferry, J. G., 1984, Rapidly growing rumen methanogenic organism that synthesises coenzyme M and has a high affinity for formate, Appl. Environ. Microbiol, 48: 81–87.

    PubMed  CAS  Google Scholar 

  • Lowe, S. E., Theodorou, M. K., and Trinci, A. P. J., 1987, Growth and fermentation of an anaerobic rumen fungus on various carbon sources and effect of temperature on development, Appl. Environ. Microbiol, 53: 1210–1215.

    PubMed  CAS  Google Scholar 

  • Macy, J., Probst, I., and Gottschalk, G., 1975, Evidence for cytochrome involvement in fumarate reduction and adenosine 5’ triphosphate synthesis by Bacteroides fragilisgrown in the presence of haemin, J. Bacteriol, 123: 436–442.

    PubMed  CAS  Google Scholar 

  • Miller, T. L., 1978, The pathway of formation of acetate and succinate from pyruvate by Bacteroides succinogenes, Arch. Microbiol, 117: 145–152.

    Article  PubMed  CAS  Google Scholar 

  • Miller, T. L., and Wolin, M. J., 1973, Formation of hydrogen and formate by Ruminococcus albus, J. Bacteriol, 116: 836–846.

    PubMed  CAS  Google Scholar 

  • Miller, T. L., and Wolin, M. J., 1979, Fermentations by saccharolytic intestinal bacteria, Am. J. Clin. Nutr., 164–172.

    Google Scholar 

  • Miller, T. L., and Wolin, M. J., 1981, Fermentation by the human large intestine microbial community in an in vitrosemicontinuous culture system, Appl. Environ. Microbiol, 42: 400–407.

    CAS  Google Scholar 

  • Miller, T. L. and Wolin, M. J., 1985, Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen, Arch. Microbiol, 141: 116–122.

    Article  PubMed  CAS  Google Scholar 

  • Miller, T. L., and Wolin, M. J., 1986, Methanogens in human and animal intestinal tracts, Syst. Appi Microbiol, 7: 223–229.

    CAS  Google Scholar 

  • Miller, T. L., Wolin, M. J., and Kusel, E. A., 1986, Isolation and characterisation of methanogens from animal feces, Syst. Appl. Microbiol, 8: 234–238.

    Google Scholar 

  • Miller, T. L., Wolin, M. J., Hongxue, Z., and Bryant, M.P., 1986, Characteristics of methanogens isolated from bovine rumen, Appl. Environ. Microbiol, 51: 201–202.

    PubMed  CAS  Google Scholar 

  • Miller, T. L., Wolin, M. J., Conway de Macario, E., and Macario, A. J. L., 1982, Isolation of Methanobrevibacter smithiifrom human feces, Appl. Environ. Microbiol, 43, 227–232.

    PubMed  CAS  Google Scholar 

  • Oppermann, R. A., Nelson, W. O., and Brown, R. E., 1957, In vitro studies on methanogenic rumen bacteria, J. Dairy Sci., 40: 779–788.

    Article  CAS  Google Scholar 

  • Patterson, J. A., and Hespell, R. B., 1979, Trimethylamine and methylamine as growth substrates for rumen bacteria and Methanosarcina barkeri, Curr. Microbiol, 3: 79–83.

    Article  CAS  Google Scholar 

  • Paynter, M. J. B., and Hungate, R. E., 1968, Characterisation of Methanobacterium mobilissp. nov., isolated from the bovine rumen, J. Bacteriol, 95: 1943–1951.

    PubMed  CAS  Google Scholar 

  • Prins, R. A., 1971, Isolation, culture, and fermentation characteristics of Selenomonas ruminantiumvar. bryantivar. n. from the rumen of sheep, J. Bacteriol, 105: 820–825.

    PubMed  CAS  Google Scholar 

  • Prins, R. A., and Van Hoven, W., 1977, Carbohydrate fermentation by the rumen ciliate Isotricha prostoma, Protistol, 13: 599–606.

    Google Scholar 

  • Prins, R. A., Van Vught, F., Hungate, R. E., and Van Vorstenbosch, C. J. A. H. V., 1972, A comparison of strains of Eubacteriwn cellulosolvensfrom the rumen, Ant. Van Leeuwen., 38: 1–11.

    Article  Google Scholar 

  • Roustan, J. L., Touzel, J. P., Prensier, G., Dobourguier, H. C, and Albagnac, G., 1986, Evidence for a lytic phage for Methanothrixsp., in “Biology of Anaerobic Bacteria,” H. C. Dubourguier, ed., Elsevier, Amsterdam.

    Google Scholar 

  • Russell, J. B., 1987, A proposed mechanism of monensin action in inhibiting ruminal bacterial growth: effects on flux and protonmotive force, J. Anim. Sci., 64: 1519–1525.

    PubMed  CAS  Google Scholar 

  • Salyers, A. A., 1984, Bacteroides of the human lower intestinal tract, Ann. Rev. Microbiol, 38: 293–313.

    Google Scholar 

  • Scheifinger, C. C, Linehan, B., and Wolin, M. J., 1975, H2 production by Selenomonas ruminantiumin the absence and presence of methanogenic bacteria. Appl. Microbiol, 29, 480–483.

    PubMed  CAS  Google Scholar 

  • Smith, P. H, and Hungate, R. E., 1958, Isolation and characterisation of Methanobacterium ruminantiumn. sp., J. Bacteriol, 75: 713–718.

    PubMed  CAS  Google Scholar 

  • Stewart, C. S., and Bryant, M. P., 1988, The Rumen Bacteria, in “The Rumen Microbial Ecosystem,” P. N. Hobson, ed., Elsevier Applied Science, London.

    Google Scholar 

  • Stewart, C. S., and Richardson, A. J., 1989, Enhanced resistance of anaerobic rumen fungi to the ionophores monensin and lasalocid in the presence of methanogenic bacteria, J. Appl. Bacteriol, 66: 85–93.

    PubMed  CAS  Google Scholar 

  • Thauer, R. K., and Kroger, A., 1984, Energy metabolism of two rumen bacteria with special reference to growth efficiency, in “Herbivore Nutrition in the Tropics and Sub-Tropics,” F. M. C. Gilchrist and R.I. Mackie, eds., The Science Press, South Africa.

    Google Scholar 

  • Van Hoven, W., and Prins, R. A.,1977, Carbohydrate fermentation by the rumen citiate Dasytricha ruminantium. Protistol, 13: 599–606.

    Google Scholar 

  • Vogels, G. D., Hoppe, W. F., and Stumm, C. K., 1980, Association of methanogenic bacteria with rumen ciliates, Appl. Environ. Microbiol, 40: 608–612.

    PubMed  CAS  Google Scholar 

  • Weimer, P.J., and Zeikus, J. G., 1977, Fermentation of cellulose and cellobiose by Clostridium thermocellumin the absence and presence of Methanobacterium thermoautotrophicum, Appl. Environ. Microbiol, 33: 289–297.

    PubMed  CAS  Google Scholar 

  • Widdel, F., 1986, Sulphate reducing bacteria and their ecological niches, in “Anaerobic Bacteria in Habitats Other Than Man,” E. M. Barnes and G. C. Mead, eds., Blackwell, Oxford.

    Google Scholar 

  • Wolin, M. J., 1982, Hydrogen transfer in microbial communities, in “Microbial Interactions and Communities,”A. T. Bull and J. H. Slater, eds., Academic Press, London.

    Google Scholar 

  • Wolin, M. J. and Miller, T., 1983, Carbohydrate fermentation, in “Human Intestinal Microflora in Health and Disease,” D. J. Hentges, ed., Academic Press, London.

    Google Scholar 

  • Wolin, M. J., and Miller, T. L., 1988, Microbe-microbe interactions, in “The Rumen Microbial Ecosystem” P.N. Hobson, ed., Elsevier Applied Science, London.

    Google Scholar 

  • Wood, T. M., Wilson, C. A., McCrae, S. I., and Joblin, K. N., 1986, A highly active extracellular cellulase from the anaerobic rumen fungus Neocallimastix frontalis, FEMS Microbiol Lett., 34: 37–40.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Stewart, C.S., Richardson, A.J., Douglas, R.M., Rumney, C.J. (1990). Hydrogen Transfer in Mixed Cultures of Anaerobic Bacteria and Fungi with Methanobrevibacter Smithii. In: Bélaich, JP., Bruschi, M., Garcia, JL. (eds) Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Hydrogen Transfer. Federation of European Microbiological Societies Symposium Series, vol 54. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0613-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0613-9_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7892-4

  • Online ISBN: 978-1-4613-0613-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics