Advertisement

Energy Metabolism of the Newborn Infant

  • Robin K. Whyte
  • Henry S. Bayley
Part of the Advances in Nutritional Research book series (ANUR, volume 8)

Abstract

For the newborn mammal the burden of homeothermy is great. Birth is accompanied by a rapid increase in the rate of heat loss, which must be matched by heat production if thermal homeostasis is to be maintained. Growth adds to the energy requirement of the neonate in the days following birth. The provision of an intake of energy greater than that lost as heat is critical for the newborn. Failure to do this results in poor weight gain or even, in low-birthweight infants, an increased risk of death.

Keywords

Energy Expenditure Energy Intake Human Milk Newborn Infant Medium Chain Triglyceride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdulrazzaq, Y. M. and Brooke, O. G., 1984, Respiratory metabolism in preterm infants: the measurement of oxygen consumption during prolonged periods, Pediatr. Res. 18: 928.Google Scholar
  2. Adam, P. A. J., 1971, Control of glucose metabolism in the human fetus and newborn infant, Adv. Metab. Dis. 5: 183.Google Scholar
  3. Anderson, G. H., Atkinson, S. A., and Bryan M. H., 1981, Energy and macronutrient content of human milk during early lactation from mothers giving birth prematurely and at term, Am. J. Clin. Nutr. 34: 258.Google Scholar
  4. Armsby, H. P., 1917, The Nutrition of Farm Animals, Macmillan, New York.Google Scholar
  5. Baba, N., Bracco, E. F., and Hashim, S. A., 1982, Enhanced thermogenesis and diminished deposition of fat in response to overfeeding with diet containing medium-chain triglycerides, Am. J. Clin. Nutr. 35: 678.Google Scholar
  6. Bach, A. C., and Babayan, V. K., 1982, Medium-chain triglycerides: an update, Am. J. Clin. Nutr. 36: 950.Google Scholar
  7. Baldwin, R. L. and Smith, N. E., 1974, Molecular control of energy metabolism, in: The Control of Metabolism (J. Baldwin, R. L. and Smith, N. E., ed.), pp. 17–34, Pennsylvania State University Press.Google Scholar
  8. Battaglia, F. C., and Meschia, G., 1978, Principal substrates of fetal metabolism, Physiol. Rev. 58: 499.Google Scholar
  9. Baumgart, S., Engle, W. D., Fox, W. W., and Polin, R. A., 1981, Effect of heat shielding on convection and evaporation, and radiant heat transfer in the premature infant, J. Pediatr. 99: 245.Google Scholar
  10. Bell, E. F., and Rios, G., 1983, Air versus skin temperature servocontrol of infant incubators, J. Pediatr. 103: 954.Google Scholar
  11. Bell, E. F., Rios, G., and Wilmoth, P. K., 1986, Estimation of 24-hour energy expenditure from shorter measurement periods in premature infants, Pediatr. Res. 20: 646.Google Scholar
  12. Benedict, F. G., and Talbot, F. B., 1915, The Physiology of the Newborn Infant: Character and Amount of Katabolism, Washington, Carnegie Institute (Publication 233 ).Google Scholar
  13. Benito, M., 1985, Contribution of brown fat to the neonatal thermogenesis, Biol. Neonate 48: 245.Google Scholar
  14. Bhakoo, O. N., and Scopes, J. W., 1970, Minimal rates of oxygen consumption in small-for-dates babies during the first days of life, Arch. Dis. Child. 49: 583.Google Scholar
  15. Brody, S., 1945, Methods in Animal Calorimetry, in: Bioenergetics and Growth, pg. 307–350, Reinhold Publishing Corporation, Waverley Press, Baltimore.Google Scholar
  16. Brooke, O. G., 1980, Energy balance and metabolic rate in,preterm infants fed with standard and high-energy formulas, Br. J. Nutr. 44: 13.Google Scholar
  17. Brooke, O. G., and Alvear, J., 1982, Postprandial metabolism in infants of low birthweight, Human Nutr. (Clin. Nutr.) 36C: 167.Google Scholar
  18. Brooke, O. G., Alvear, J., and Arnold, M., 1979, Energy retention, energy expenditure, and growth in healthy immature infants, Pediatr. Res. 13: 215.Google Scholar
  19. Bruck, K., 1961, Temperature regulation in the newborn infant, Biol. Neonat. 3: 65.Google Scholar
  20. Buetow, K. C., Klein, P. H., and Klein, S. W., 1964, Effect of maintenance of “normal” skin temperature on survival of infants of low birth weight. Pediatrics 34: 163.Google Scholar
  21. Butte, N. F., Garza, C., Smith, E. O., and Nichols, B. L., 1984, Human milk intake and growth performance of exclusively breast-fed infants, J. Pediatr. 104: 187.Google Scholar
  22. Chappell, J. E., Clandinin, M. T., Kearney-Volpe, C., Reichman, B., and Swyer P. R., 1986, Fatty acid balance studies in premature infants fed human milk of formula: effect of calcium supplementation, J. Pediatr. 108: 439.Google Scholar
  23. Chessex, P., Reichman, B. L., Verellen, G. J. E., Putet, G., Smith, J. M., Heim, T., and Swyer, P. R., 1981, Influence of postnatal age, energy intake, and weight gain on energy metabolism in the very low-birth-weight infant, J. Pediatr. 99: 761.Google Scholar
  24. Chessex, P., Reichman, B. L, Verellen, G J E, Putet, G., Smith, J. M., Heim, T., and Swyer, P. R., 1983, Quality of growth in premature infants fed their own mothers milk, J.Pediatr. 102: 107.Google Scholar
  25. Clandinin, M. T., Field, C. J., Hargreaves, K., Morson, L., and Zsigmond, E., Role of diet fat in subcellular structure and function, Can. J. Physiol. Pharm. 63: 546.Google Scholar
  26. Cone, T. E., Jr., 1981, History of infant and child feeding: From the earliest years through the development of scientific concepts, in: Infant and Child Feeding ( J. T. Bond, L. J. Filer, Jr., G. A. Leveille, A. M. Thomson, and W. B. Weil, eds.), pp. 3–34, Academic Press, New York.Google Scholar
  27. Day, R., 1943, Respiratory metabolism in infancy and childhood, Am. J. Dis. Child. 65: 376.Google Scholar
  28. Ferre, P., Decaux, D. F., Issad, T., and Girard, J., 1986, Changes in energy metabolism during the suckling and weaning period in the newborn, Reprod. Nutr. Dee. 26: 619.Google Scholar
  29. Fomon, S. J., 1967, Body composition of the male reference infant during the first year of life, Pediatrics 40: 863.Google Scholar
  30. Fomon, S. J, 1974, Urinary excretion of nitrogen by normal fullsize infants: relation to intake of nitrogen, in: Infant Nutrition, pp. 542–548, Saunders, Philadelphia.Google Scholar
  31. Fomon, S. J., Ziegler, E. E., Thomas, L. M., Jensen R. L., and Filer L. J., 1970, Excretion of fat by normal term infants fed various milks and formulas, Am. J. Clin. Nutr. 28: 1299.Google Scholar
  32. Fomon, S. J., Filer, L. J., Jr., Anderson, T. A., and Ziegler, E. E., 1979, Recommendations for feeding normal infants, Pediatrics 63: 52Google Scholar
  33. Freymond, D., Schutz, Y., Decombaz, J. M., Michell, J. L, and Jequier, E., 1986, Energy balance, physical activity, and thermogenic effect of feeding in premature infants, Pediatr. Res. 20: 638.Google Scholar
  34. Garza, C., Stuff, J., and Butte, N. F., 1987, Growth of the breast-fed infant, in: Human Lactation 3: The Effects of Human Milk Upon the Recipient Infant ( A. S. Goldman, S. A. Atkinson and L. A. Hanson, eds.), Plenum Press, New York.Google Scholar
  35. Gentz, J., and Kellum, M., 1971, Metabolic effects of feeding after times of starvation, Biol. Neonate 19: 24.Google Scholar
  36. Gentz, J., Kellum, M., and Persson, B., 1976, The effect of feeding on oxygen consumption, RQ and plasma levels of glucose, FFA, and D-13-hydroxybutyrate in newborn infants of diabetic mothers and small for gestational age infants, Acta Paediatr. Scand. 65: 445.Google Scholar
  37. Glass L., Silverman, W. A., and Sinclair, J. C., 1968, Effect of the thermal environment on cold resistance and growth of small infants after the first week of life, Pediatrics 41: 1033.Google Scholar
  38. Gudinchet, F., Schutz, Y., Michell, J-L., Stettler, E., and Jequier, E., 1982, Metabolic cost of growth in very low-birth-weight infants, Pediatr. Res. 16: 1025.Google Scholar
  39. Hamosh, M., 1979, A review: Fat digestion in the newborn: role of lingual lipase and preduodenal digestion, Pediatr. Res. 13: 615.Google Scholar
  40. Hamosh, M, 1982, Lingual and breast milk lipases, Adv. Paediatr. 29: 33Google Scholar
  41. Harris, W. S., Connor, W. E., and Lindsey S., 1984, Will dietary co-3 fatty acids change the composition of human milk ? Am. J. Clin. Nutr. 40: 780.Google Scholar
  42. Heim, T., 1981, Homeothermy and its metabolic cost, in: Scientific Foundations of Pediatrics ( J. A. Davis and J. Dobbing, eds.), pp. 91–128, Heinemann, London.Google Scholar
  43. Herrington, L. P., 1940, The heat regulation of small laboratory animals at various environmental temperatures, Am. J. Physiol. 129: 123.Google Scholar
  44. Hey, E. N., 1969, The relation between environmental temperature and oxygen consumption in the new-born baby, J. Physiol. 200: 603.Google Scholar
  45. Hey, E. N., 1973, Physiologic principles involved in the care of the preterm human infant, in: The Mammalian Fetus in Vitro (C. R. Austin, ed.), pp. 251-333.Google Scholar
  46. Hey, E. N., and Katz, G., 1969, Evaporative water loss in the newborn baby, J.Physiol. 200: 605.Google Scholar
  47. Hey, E. N. and Katz, G., 1970, The optimum thermal environment for naked babies, Arch. Dis. Child. 45: 328.Google Scholar
  48. Hey, E. N., and Mount, L. E., 1967, Heat losses from babies in incubators, Arch. Dis. Child. 42: 75.Google Scholar
  49. Hey, E. N., and O’Connell, B., 1970, Oxygen consumption and heat balance in the cot-nursed baby, Arch. Dis. Child. 45: 335.Google Scholar
  50. Hill, J. R., 1959, The oxygen consumption of newborn and adult mammals: its dependance on the oxygen tension in the inspired air and on the environmental temperature, J. Physiol. 149: 346.Google Scholar
  51. Hill, J. R., and Robinson, D. C., 1968, Oxygen consumption in normally grown, smallfor-dates and large-for-dates new-born infants, J. Physiol. 199: 685.Google Scholar
  52. Hirsch, J., and Leibel, R. L., 1988, New light on obesity, New Eng. J. Med. 318: 509Google Scholar
  53. Hull, D., 1966, The structure and function of brown fat, Br. Med. Bull. 22: 92.Google Scholar
  54. Hutchinson-Smith, B., 1973, Skinfold thickness in relation to birthweight, Develop. Med. Child Neurol. 15: 628Google Scholar
  55. Hytten, F. E., 1954a, Clinical and chemical studies in human lactation: II. Variation in major constituents during a feeding, Br. Med. J. 1: 176.Google Scholar
  56. Hytten, F. E., 1954b, Clinical and chemical studies in human lactation: IV. Individual differences in composition of milk, Br. Med. J. 1: 253.Google Scholar
  57. Hytten, F. E., 1954c, Clinical and chemical studies in human lactation: III. Diurnal variation in major constituents of milk, Br. Med. J. 1: 179.Google Scholar
  58. Jelliffe, D. B., and Jelliffe, E. F., 1978, The volume and composition of human milk in poorly nourished communities: a review, Am. J. Clin. Nutr. 31: 492.Google Scholar
  59. Jones, P. J. H., Winthrop, A. L., Schoeller, D. A., Swyer, P. R., Smith, J., Filler, R. M., and Heim, T., 1987, Validation of doubly labeled water for assessing energy expenditure in infants, Pediatr. Res. 21: 242.Google Scholar
  60. Karlberg, P., 1952, Determination of standard energy metabolism (basal metabolism) in normal infants, Acta Pediatr. Scand. 41 (Suppl. 89): 1.Google Scholar
  61. Kashyap, S., Forsyth, M., Zucker C., Ramakrishnan, R., Dell, R. B., and Heird, W. C., 1986, Effects of varying protein and energy intakes on growth and metabolic response in low birthweight infants, J. Pediatr. 108: 955.Google Scholar
  62. Kien, C. L., Sumners, J. E., Stetina, J. S., Heimler, R., and Grausz, J. P., 1982, A method for assessing carbohydrate energy absorption and its application to premature infants, Am. J. Clin. Nutr. 36: 910.Google Scholar
  63. Kleiber, M., 1975a, Life as a combustion process, in: The Fire of Life; an Introduction to Animal Energetics, pp. 3–8, Wiley, New York.Google Scholar
  64. Kleiber, M., 1975b, Body size and metabolic rates, in: The Fire of Life; an Introduction to Animal Energetics, pp. 179–222, Wiley, New York.Google Scholar
  65. Kloosterman, G. J., 1970, On intrauterine growth: The significance of prenatal care, Int. J. Gynaecol. Obstet. 8: 895.Google Scholar
  66. Kurzner, S. I., Garg, M., Bautista, D. B., Sargent, C. W., Bowman, M., and Keens, T. G., 1988, Growth failure in bronchopulmonary dysplasia: elevated metabolic rates and pulmonary mechanics, J. Pediatr. 112: 73Google Scholar
  67. Lemons, J. A., Moorehead, H., Jansen, R. D., and Schreiner, R. L., 1982, The energy content of infant formulas, Early Human Dee. 6: 305.Google Scholar
  68. Levine, S. Z., Wilson, J. R., Berliner, F., and Rivkin, H., 1927, The respiratory metabolism in infancy and childhood; VI. The specific dynamic action of food in normal infants, Am. J. Dis. Child. 35: 723.Google Scholar
  69. Lister, G., Hoffman, J. I. E., and Rudolph, A. M., 1974, Oxygen uptake in infants and children: a simple method for measurement, Pediatrics 53: 656.Google Scholar
  70. Lucas, A., Lucas, P. J., and Baum, D., 1980, The nipple shield sampling system: a device for measuring the dietary intake of breast-fed infants, Early Hum. Dee. 4: 365.Google Scholar
  71. Lucas, A., Gore, S. M., Cole, T. J., Bamford, M. F., Dossetor, J. F. B., Barr, I., Dicerlo, L., Cork, S., and Lucas, P. J., 1984, Multicentre trial on feeding low birthweight infants-effects of diet on early growth, Arch. Dis. Child. 59: 722.Google Scholar
  72. Lucas, A., Ewing, G., Roberts, S. B., and Coward, W. A., 1987, How much milk does the breast fed infant consume and expend? Br. Med. J. 29: 75.Google Scholar
  73. MacLean, W. C., Jr., and Fink, B. B., 1980, Lactose malabsorption by premature infants: magnitude and clinical significance, J. Pediatr. 97: 383.Google Scholar
  74. McKeown, T., and Record, R. G., 1952, Observations on fetal growth in multiple pregnancy in man, J. Endocrinol. 8: 386.Google Scholar
  75. Malin, S. W., and Baumgart, S. B., 1987, Optimal thermal management for low birth weight infants nursed under high-powered radiant warmers, Pediatrics 79: 47.Google Scholar
  76. Markestad, M. D., and Fitzharding, P. M., 1981, Growth and development in children recovering from bronchopulmonary dysplasia, J. Pediatr. 98: 597.Google Scholar
  77. Marks, K. H., Uhrman, S. B., Friedman, Z., and Misels, M. J., 1977, The effect of clothing on the growth of very low birth weight infants, Pediatr. Res. 11: 540.Google Scholar
  78. Merrill, A. L. and Watt, B. K., 1973, Energy value of foods: basis and derivation. Agriculture Handbook No. 74, United States Department of Agriculture, Washington.Google Scholar
  79. Mestyan, J., Jarai, I., and Fekete, M., 1968, The total energy expenditure and its components in premature babies maintained under different nursery and environmental conditions, Pediatr. Res. 2: 161.Google Scholar
  80. Mestyan, J., Jarai, L, Kekete, M., and Soltesz, G., 1969, Specific dynamic action in premature infants kept at and below the neutral temperature, Pediatr. Res. 3: 41.Google Scholar
  81. Moss, M., Moreau G., and Lister, G., 1987, Oxygen transport and metabolism in the concious lamb: the effects of hypoxia, Pediatr. Res. 22: 177.Google Scholar
  82. Murlin, J. R., Conklin, R. E., and Marsh, M. E., 1925, Energy metabolism of normal new-born babies, Am. J. Dis. Child. 29: 1.Google Scholar
  83. Okamoto, E., Muttart, C. R., Zucker, C. L., and Heird, W. C., Use of medium-chain triglycerides in feeding the low-birth-weight infant, Am. J. Dis. Child. 136: 428.Google Scholar
  84. Perlstein, P. H., Edwards, N. K., Atherton, H. D., and Sutherland, S. M., 1976, Computer-assisted newborn intensive care, Pediatrics 57: 494.Google Scholar
  85. Persson, B., and Gentz, J., 1966, The pattern of blood lipids, glycerol and ketone bodies during the neonatal period, infancy and childhood, Acta. Paediatr. Scand. 55: 353Google Scholar
  86. Persson, P-H., and Weidner, B-M., 1986, Intrauterine weight curves obtained by ultrasound, Acta Obstet. Gynecol. Scand. 65: 169.Google Scholar
  87. Puller, J. D., and Webster, A. J. F., 1977, The energy cost of fat and protein deposition in the rat, Br. J. Nutr. 37: 355Google Scholar
  88. Putet, G., Senterre, J., Rigo, J., and Salle, B., 1984, Nutrient balance, energy utilization, and composition of weight gain in very-low-birth-weight infants fed pooled human milk or a preterm formula, J. Pediatr. 105: 79.Google Scholar
  89. Putet, G., Rigo, J., Salle, B., and Senterre, J., 1987, Supplementation of pooled human milk with casein hydrolysate: energy and nitrogen balance and weight gain composition in very low birth weight infants, Pediatr. Res. 21: 458.Google Scholar
  90. Reichman, B. L., Chessex, P., Putet, G., Verellen, G. J. E., Smith, J. M., Heim, T., and Swyer, P. R., 1981, Diet, fat accretion, and growth in premature infants, N. Eng. J. Med. 305: 1495.Google Scholar
  91. Reichman, B. L, Chessex, P., Putet, G., Verellen, G. J. E., Smith, J. M., Heim, T., and Swyer, P. R., 1982, Partition of energy metabolism and energy cost of growth in the very-low-birth-weight infant, Pediatr. 69: 446.Google Scholar
  92. Reichman, B. L, Chessex, P., Verellen, G. J. E., Putet, G., Smith, J. M., Heim, T., and Swyer, P. R., 1983, Dietary composition and macronutrient storage in preterm infants, Pediatr. 72: 322.Google Scholar
  93. Richardson, P., Bose, C. L, Bucchiarelli, R. L, and Carlstrom, J. R., 1984, Oxygen consumption of infants with respiratory distress syndrome, Biol. Neonat. 46: 53.Google Scholar
  94. Roberts, S. B., Savage, J., Coward, W. A., Chew, B., and Lucas, A., 1988, Energy expenditure and intake in infants born to lean and overweight mothers, N. Eng. J. Med. 318: 461Google Scholar
  95. Romney, S. L., Reid, D. E., Metcalfe, J., and Burwell, C. S., 1955, Oxygen utilization by the human fetus in utero, Am. J. Obstet. Gynecol. 70: 791.Google Scholar
  96. Rubecz, I., and Mestyan, J., 1975, The partition of maintenance energy expenditure and the pattern of substrate utilization in intrauterine malnourished newborn infants before and after recovery, Acta Pediatr. Hung. 16: 335.Google Scholar
  97. Sauer, P. J. J., Dane, H. J., and Visser, H. K. A., 1984, Longitudinal studies of metabolic rate, heat loss, and energy cost of growth in low birthweight infants, Pediatr. Res. 18: 254.Google Scholar
  98. Schanler, R., Garza C., and Nichols, B. L., 1985, Fortified mothers’ milk for very low birth weight infants: results of growth and nutrient balance studies, J. Pediatr. 107: 437.Google Scholar
  99. Schulte, F. J., 1981, Developmental Neurophysiology, in: Scientific Foundations of Pediatrics ( J. A. Davis and J. Dobbing, eds.), pp. 785–829, Heinemann, London.Google Scholar
  100. Schulze, K. F., Stefanski, M., Masterton, J., Spinnazola, R., Ramakrishnan, R., Dell, R. B., and Heird, W. C., 1987, Energy expenditure, energy balance and composition of weight gain in low birth weight infants fed diets of different protein and energy content, J. Pediatr. 110: 753.Google Scholar
  101. Scopes, J. W., and Ahmed, I., 1966, Indirect assessment of oxygen requirements in newborn babies by monitoring deep body temperature, Arch. Dis. Child. 41: 25.Google Scholar
  102. Senterre, J., and Karlberg, P., 1970, Respiratory quotient and metabolic rate in normal full-term and small-for-date newborn infants, Acta Pediat. Scand. 59: 653.Google Scholar
  103. Silver, M., 1976, Fetal Energy Metabolism, in: Fetal Physiology and Medicine ( R. W. Beard and P. W. Nathanielsz, eds.), pp. 173–193, Saunders, Philadelphia.Google Scholar
  104. Silverman, W. A., Fertig, J. W., and Berger, A. P., 1958, The influence of the thermal environment upon the survival of newly born premature infants, Pediatrics 22: 876.Google Scholar
  105. Sinclair, J. C., 1976, Metabolic rate and temperature control, in: The Physiology of the Newborn Infant, 4th ed. ( C. A. Smith and N. M. Nelson, eds.), pp. 354–415, Thomas, Springfield, IL.Google Scholar
  106. Sinclair, J. C., 1978, The Energy Balance of the Newborn, in: “Temperature Regulation and Energy Metabolism in the Newborn (J. C. Sinclair, ed.), pp. 187–204, Grune and Stratton, New York.Google Scholar
  107. Sinclair, J. C., and Silverman, W. A., 1966, Intrauterine growth in active tissue mass of the human fetus, with particular reference to the undergrown baby, Pediatr. 38: 48.Google Scholar
  108. Sinclair, J. C., Scopes, J. W., and Silverman, W. A., 1967, Metabolic reference standards for the neonate, Pediatr. 39: 724.Google Scholar
  109. Sparks, J. W., Girard, J. R., and Battaglia, F. C., 1980, An estimate of caloric requirements of the human fetus, Biol. Neonate 38: 113.Google Scholar
  110. Stothers, J. K., 1981, Head insulation and heat loss in the newborn, Arch. Dis. Child, 56: 530.Google Scholar
  111. Stothers, J. K., and Warner, R. M., 1979, Effect of feeding on neonatal oxygen consumption, Arch. Dis. Child. 54: 415.Google Scholar
  112. Stothers, J. K., and Warner, R. M., 1984, Thermal balance and sleep state in the newborn, Early Hum. Dev. 9: 313.Google Scholar
  113. Stuff, J., Garza, C., Fraley, J. K., Smith, E. O., Klein, E. R., and Nichols, B. L., 1986, Sources of variation in milk and caloric intakes in breast-fed infants: implications for lactation study design and interpretation, Am. J. Clin. Nutr. 43: 361.Google Scholar
  114. Swyer, P. R., 1978, Heat loss after birth, in: Temperature Regulation and Energy Metabolism in the Newborn (J. C. Sinclair, ed.), pp. 91–128, Grune and Stratton, New York.Google Scholar
  115. Tanner, J. M., 1970, Standards for birthweight or intrauterine growth, Pediatrics 46: 1.Google Scholar
  116. Tantibhedhyangkul, P., and Hashim, S. A., 1975, Medium chain triglyceride feeding in premature infants: effects on fat and nitrogen absorption, Pediatrics 55: 359.Google Scholar
  117. Tyson, J. E., Lasky, R. E., Mize, C. E., Richards, C. J., Blair-Smith, N., Whyte, R., and Beer, A. E., 1983, Growth, metabolic response, and development in very-lowbirth-weight infants fed banked human milk or enriched formula: I. Neonatal findings, J. Pediatr. 103: 95.Google Scholar
  118. Usher, R., and MacLean, F., 1969, Intrauterine growth of live-born Caucasian infants at sea level: standards obtained by measurements in 7 dimensions of infants born between 25 and 44 weeks gestation, J.Pediatr. 74: 901.Google Scholar
  119. Villee, C. A., 1953, The metabolism of human placenta in vitro, J. Biol. Chem. 205: 113.Google Scholar
  120. Weinstein, M. R., and Oh, W., 1981, Oxygen consumption in infants with bronchopulmonary dysplasia, J.Pediatr. 99: 958.Google Scholar
  121. Weinstein, M. R., Haugen, K., Bauer, J. H., Hewitt, J., and Finan, D., 1987, Intravenous energy and amino acids in the preterm newborn infant: Effects on metabolic rate and potential mechanisms of action, J. Pediatr. 111: 119.Google Scholar
  122. Whyte, R. K., Sinclair, J. C., Bayley, H. S., Campbell, D., and Singer, J., 1982, Energy cost of growth of premature infants, Acta Pediatr. Acad. Sci. Hung. 23: 85.Google Scholar
  123. Whyte, R. K., Haslam, R., Vlainic, C., Shannon, S., Samulski, K., Campbell, D., Bayley, H. S., and Sinclair, J. C., 1983, Energy balance and nitrogen balance in growing low birthweight infants fed human milk or formula, Pediatr. Res. 17: 891.Google Scholar
  124. Whyte, R. K., Bayley, H. S., and Sinclair, J. C., 1985, Energy intake and the nature of growth in low birth weight infants, Can. J. Physiol. Pharmacol. 63: 565.Google Scholar
  125. Whyte, R. K., Campbell D., Stanhope, R., Bayley, H. S., and Sinclair, J. C., 1986, Energy balance in low birth weight infants fed formula of high or low medium-chain triglyceride content, J. Pediatr. 108: 964Google Scholar
  126. Widdowson, E. M., and Dickerson, J. W. T, 1964, Chemical composition of the body, in: Mineral Metabolism: an Advanced Treatise ( C. L. Comar and F. Bronner, eds.), pp. 1–247, Academic Press, New York.Google Scholar
  127. Ziegler, E. E., O’Donnell, A. M., Nelson, S. E., and Fomon, S. J., 1976, Body composition of the reference fetus, Growth 40: 329.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Robin K. Whyte
    • 1
    • 2
  • Henry S. Bayley
    • 1
    • 2
  1. 1.Department of PediatricsMcMaster UniversityHamiltonCanada
  2. 2.Department of Nutritional SciencesUniversity GuelphGuelphCanada

Personalised recommendations