Skip to main content

Structural Rules and a Logical Hierarchy

  • Chapter
Mathematical Logic

Abstract

Gentzen-type sequent calculi usually contain three structural rules, i.e., exchange, contraction and weakening rules. In recent years, however, there have been various studies on logics that have not included some or any of these structural rules. The motives or purposes of these studies have been so diverse that sometimes close connections between them have been overlooked. Here we will make a brief survey of recent results on these logics in an attempt to make these interrelationships clearer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrusci, V.M., 1987, Sequent calculus for intuitionistic linear propositional logic I, II, III, manuscript.

    Google Scholar 

  • Babaev, A.A., and Solovjov, S.V., 1979, A coherence theorem for canonical maps in cartesian closed categories, Zapiski Nauchnykh Seminarov Leningradskogo Otdelenija Matematicheskogo Institute imeni V.A. Steklova (in Russian: with English summary), 88:3–29.

    MATH  Google Scholar 

  • van Benthem, J., 1986, “Essays in logical semantics”, Studies in Linguistics and Philosophy, D. Reidel, Dordrecht.

    Google Scholar 

  • van Benthem, J., 1987, Categorial grammar and lambda calculus, in: “Mathe-matical logic and its applications”, 39–60, Plenum Press, New York.

    Chapter  Google Scholar 

  • van Benthem, J., 1987a, Semantic type change and syntactic recognition, in: “Categories, types and semantics”, D. Reidel, Dordrecht.

    Google Scholar 

  • van Benthem, J., 1987b, Categorial grammar and type theory, to appear in: “Linguistics and Philosophy”.

    Google Scholar 

  • Bull, R., 1987, Survey of generalizations of Urquhart semantics, Notre Dame J. Formal Logic 28:220–237.

    Article  MathSciNet  MATH  Google Scholar 

  • Buszkowski, W., 1986, Completeness results for Lambek syntactic calculus, Z. Math. Logik Grundlagen Math. 32:13–28.

    Article  MathSciNet  MATH  Google Scholar 

  • Dardžania, G.K., 1977, Intuitionistic system without contraction, . Bull. Sect. Logic, Polish Acad. Sci. 6:2–8.

    MATH  Google Scholar 

  • Došen, K., 1986, Sequent systems and groupoid models, manuscript, Math. Inst., Serbian Acad. Sci., Belgrade.

    Google Scholar 

  • Girard, J.Y., 1987, Linear logic, Theor. Compt. Sci. 50:1–102.

    Article  MathSciNet  MATH  Google Scholar 

  • Girard, J.Y., 1987a, Linear logic and parallelism, in: “Mathematical models for the semantics of parallelism”, Lecture Notes in Compt. Sci., 280: 166–182.

    Google Scholar 

  • Girard, J.Y., and Lafont, Y., 1987, Linear logic and lazy computation, in: “TAPSOFT ‘87”, Lecture Notes in Compt. Sci., 250:52–66.

    Google Scholar 

  • Grišin, V.N., 1974, On a nonstandard logic and its application to the set theory, Studies in Formalized Languages and Nonclassical Logics Nauka, Moscow, (in Russian), 135–171.

    Google Scholar 

  • Grišin, V.N., 1982, Predicate and set-theoretic calculi based on logic without contractions, Math. USSR Izvestija 18:41–59.

    Article  Google Scholar 

  • Hindley, J.R., 1987, BCK-combinators and linear λ-terms have types, manuscript.

    Google Scholar 

  • Hindley, J.R., and Seldin, J.P., 1986, “Introduction to combinators and λ-calculus”, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Hirokawa, S., 1987, Uniqueness of proof figure of formulas in BCK-logic, manuscript.

    Google Scholar 

  • Jaśkowski, S., 1963, über Tautologien, in welchen keinen Variable mehr als zweimal vorkommt, Z. Math. Logik Grundlagen Math. 9:219–228.

    Article  MathSciNet  MATH  Google Scholar 

  • Kanger, S., 1957, “Provability in logic”, Stockholm Studies in Philosophy 1, Almqvist & Wiksell, Stockholm.

    Google Scholar 

  • Ketonen, J., and Weyrauch, R., 1984, A decidable fragment of predicate calculus, Theor. Compt. Sci. 32:297–307.

    Article  MATH  Google Scholar 

  • Komori, Y., 1986, Predicate logics without the structure rule, Studia Logica 45:393–404.

    Article  MathSciNet  MATH  Google Scholar 

  • Komori, Y., 1987, BCK algebras and lambda calculus, in: “Proc. 10th Symposium on Semigroups (Sakado 1986)”, 5–11.

    Google Scholar 

  • Lafont, Y., 1988, The linear abstract machine, Theor. Compt. Sci. 59:157–180.

    Article  MathSciNet  MATH  Google Scholar 

  • Lambek, J., 1958, The mathematics of sentence structure, Amer. Math. Monthly 65:154–170.

    Article  MathSciNet  MATH  Google Scholar 

  • Lambek, J., 1961, On the calculus of syntactic types, Proc. Amer. Math. Soc. 12:166–178.

    Google Scholar 

  • Lambek, J., 1968, Deductive systems and categories I, Math. System Theory 2:287–318.

    Article  MathSciNet  MATH  Google Scholar 

  • Lambek, J., 1969, Deductive systems and categories II, in: “Category theory, homology theory and their applications I”, Lecture Notes in Math., 86: 76–122.

    Google Scholar 

  • Lambek, J., 1972, Deductive systems and categories III, in: “Toposes, alge-braic geometry and logic”, Lecture Notes in Math., 274:57–82.

    Google Scholar 

  • Minc, G.E., 1977, Closed categories and the theory of proofs, Zapiski Nauchnykh Seminarov Leningradskogo Otdelenija Matematicheskogo Insti-tuta imeni V.A. Steklova 63:83–114.

    MathSciNet  Google Scholar 

  • Mine, G.E., 1984, Simple proof of the coherence theorem for cartesian closed categories, J. Symbolic Logic 49:701.

    Google Scholar 

  • Ono, H., 1985, Semantical analysis of predicate logics without the contraction rule, Studia Logica 44:187–196.

    Article  MathSciNet  MATH  Google Scholar 

  • Ono, H., 1985a, Some remarks on semantics for the classical logic without the contraction rules, Reports on Math. Logic 19:3–12.

    MATH  Google Scholar 

  • Ono, H., and Komori, Y., 1985, Logics without the contraction rule, J. Symbolic Logic 50:169–201.

    Article  MathSciNet  MATH  Google Scholar 

  • Suzuki, N.Y., 1987, The existence of 2א0 logics lacking the weakening rule below the intuitionistic logic, Reports on Math. Logic 21:85–95.

    MATH  Google Scholar 

  • Szabo, M.E., 1978, “Algebra of proofs”, Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam.

    Google Scholar 

  • Wang, H., 1963, “A survey of mathematical logic”, Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam.

    MATH  Google Scholar 

  • Wroński, A., 1984, Interpolation and amalgamation properties of BCK-algebras, Mathematica Japonica 29:115–121.

    MathSciNet  MATH  Google Scholar 

  • Wroński, A., and Krzystek, P.S., On pre-Boolean algebras, manuscript.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Ono, H. (1990). Structural Rules and a Logical Hierarchy. In: Petkov, P.P. (eds) Mathematical Logic. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0609-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0609-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7890-0

  • Online ISBN: 978-1-4613-0609-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics