Advertisement

Interpretability Logic

  • Albert Visser

Abstract

Interpretations are much used in metamathematics. The first application that comes to mind is their use in reductive Hilbert-style programs Think of the kind of program proposed by Simpson, Feferman or Nelson (see Simpson[1988], Feferman[1988], Nelson[1986]). Here they serve to compare the strength of theories, or better to prove conservation results within a properly weak theory. An advantage of using interpretations is that even if their use should — perhaps- be classified as a proof-theoretical method, it is often possible to employ a model-theoretical heuristics. An example is given in section 7.2 where a conservation result due to Paris & Wilkie, which is proven by a model-theoretical argument, is formalized in a weak theory. For more discussion of and perspective on the use of interpretability in reductive programs the reader is referred to Feferman[1988].

Keywords

Natural Number Relation Symbol Sequential Theory Provability Logic Logic Colloquium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennet, C., 1986a, On some orderings of extensions of arithmetic, Thesis, Department of Philosophy, University of Göteborg, Göteborg.Google Scholar
  2. Bennet, C., 1986b, On a problem by D. Guaspari, in: Furberg, M. &al eds., Logic and Abstraction, Acta Philosophica Gothoburgensia 1, Göteborg, 61–69.Google Scholar
  3. Bennet, J.H., 1962, On spectra, Thesis, Princeton University, Princeton.Google Scholar
  4. Bezboruah, A., Shepherdson, J.C., 1976, Gödel’s second incompleteness theorem for Q, JSL 41, 503–512.Google Scholar
  5. Buss, S., 1985, Bounded Arithmetic, Thesis, Princeton University, Princeton. Reprinted: 1986, Bibliopolis, Napoli.Google Scholar
  6. Diaconescu, R., Kirby, L.A.S., 1987, Models of arithmetic and categories with finiteness conditions, Annals of pure and applied logic 35, 123–148.Google Scholar
  7. Dimitricopoulos, C., 1980, Matijasevic’s theorem and fragments of arithmetic, Thesis, Univ. of Manchester, Manchester.Google Scholar
  8. Ehrenfeucht, A., Mycielski, J., 1980, Theorems and problems of the lattice of local interpretability. Google Scholar
  9. Feferman, S., 1960, Arithmetization of metamathematics in a general setting,Fund. Math. 49, 33–92.MathSciNetGoogle Scholar
  10. Feferman, S., Kreisel G., Orey, S., 1960, 1-consistency and faithful interpretations, Archiv für Mathematische Logik and Grundlagen der Mathematik 6, 52–63.Google Scholar
  11. Feferman, S., 1988, Hilbert’s program relativized: proof-theoretical and foundational reductions, JSL 53, 364–384.Google Scholar
  12. Friedman, H., 1988, Translatability and relative consistency II. Google Scholar
  13. Gaifman, H., Dimitracopoulos, C., 1982, Fragments of Peano’s arithmetic and the MRDP theorem, in: Logic and Algorithmic, Monography 30 de l’Enseignement Mathematique, Genève, 187–206.Google Scholar
  14. Guaspari D., 1979, Partially conservative extensions of arithmetic, Transactions of the AMS 254, 47–68.Google Scholar
  15. Hájek, P., 1971, On interpretability in set theories I, Commentationes Mathematicae Universitatis Carolinae 12, 73–79.Google Scholar
  16. Hájek, P., 1972, On interpretability in set theories II, Commentationes Mathematicae Universitatis Carolinae 13, 445–455.Google Scholar
  17. Hájek, P., 1979, On partially conservative extensions of arithmetic,in: Barwise, J. &al eds.,Logic Colloquium ‘78, North Holland, Amsterdam, 225–234.Google Scholar
  18. Hájek, P., 1981, Interpretability in theories containing arithmetic II, Commentationes Mathematicae Universitatis Carolinae 22, 667–688.Google Scholar
  19. Hájek, P., 1981, On partially conservative extensions of arithmetic II. Google Scholar
  20. Hájek, P., 1981, Positive results on fragments of arithmetic. Google Scholar
  21. Hájek, P., 1984, On a new notion of partial conservativity,in: Richter, M.M. &al eds, Computation and Proof Theory, Logic Colloquium ‘83, Lecture Notes in Mathematics 1104, Springer Verlag, Berlin, 217–232.CrossRefGoogle Scholar
  22. Hájek, P., Kucera, A., 1984, On recursion theory in IS 1 Google Scholar
  23. Hájek, P., 1984, On logic in fragments of arithmetic Google Scholar
  24. Hájková, M., 197la, The lattice of binumerations of arithmetic I,Commentationes Mathematicae Universitatis Carolinae 12, 81–104.Google Scholar
  25. Hájková, M., 197lb, The lattice of binumerations of arithmetic II, Commentationes Mathematicae Universitatis Carolinae 12, 281–306.Google Scholar
  26. Hájková, M. & Hájek, P., 1972, On interpretability in theories containing arithmetic,Fundamenta Mathematica 76, 131–137.Google Scholar
  27. Harrow, K., 1987, The bounded arithmetic hierarchy, Information and Control 36.Google Scholar
  28. Jongh, D.H.J. de & Veltman F., 1987, Provability logics for relative interpretability,this volume.Google Scholar
  29. Krajicek, J., 1985, Some theorems on the lattice of local interpretability types,Zeitschrift für Mathematische Logik and Grundlagen der Mathematik 31, 449–460.Google Scholar
  30. Krajicek, J., 1985, A note on proofs of falsehood. Google Scholar
  31. Lindström, P., 1979, Some results on interpretability, in: Proceedings of the 5th Scandinavian Logic Symposium, Aalborg, 329–361.Google Scholar
  32. Lindström, P., 1980, Notes on partially conservative sentences and interpretability, Philosophical Communications, Red Series no 13, Göteborg.Google Scholar
  33. Lindström, P., 1981, Remarks on provability and interpretability,Philosophical Communications, Red Series no 15, Göteborg.Google Scholar
  34. Lindström, P., 1982, More on partially conservative sentences snd interpretability, Philosophical Communications, Red Series no 17, Göteborg.Google Scholar
  35. Lindström, P., 1984a, On faithful interpretability, in: Richter, M.M. &al eds, Computation and Proof Theory, Logic Colloquium ‘83, Lecture Notes in Mathematics 1104, Springer Verlag, Berlin, 279–288.CrossRefGoogle Scholar
  36. Lindström, P., 1984b, On certain lattices of degrees of interpretability,Notre Dame Journal of Formal Logic 25, 127–140.MATHCrossRefGoogle Scholar
  37. Lindström, P., 1984c, On partially conservative sentences and interpretability,Proceedings of the AMS 91, 436–443.Google Scholar
  38. Lindström, P., 1984d, Provability and interpretability in theories containing arithmetic, Atti degli incontri di logica matematica 2, 431–451.Google Scholar
  39. Macintyre, A., 1987, On the strength of weak systems,from: Logic, Philosophy of Science and Epistemology, Hölder-Piçhler-Tempsky, 43–59.Google Scholar
  40. Minc, G., 1972, Quantifier free and one-quantifier induction,Journal of Soviet Mathematics, volume 1, 71–84.CrossRefGoogle Scholar
  41. Misercque, D., 1983, Answer to a problem by D. Guaspari, in: Guzicki, W. &al eds., Open days in Model Theory and Set Theory, Proceedings of a conference held in September 1981 in Jadwisin, Poland, Leeds University, 181–183.Google Scholar
  42. Misercque, D., 1985, Sur le treillis des formules fermées universelles de l’ arithmétique dePeano,Thesis, Université Libre de Bruxelles.Google Scholar
  43. Montagna, F., 1987, Provability in finite subtheories of PA and relative interpretability: a modal investigation,JSL 52, 494–511.Google Scholar
  44. Montague, R., 1958, The continuum of relative interpretability types,JSL 23, 460.Google Scholar
  45. Montague, R., 1962, Theories incomparable with respect to relative interpretability, JSL 27x, 195–211Google Scholar
  46. Mycielski, J., 1962, A lattice connected with relative interpretability of theories, Notices of the AMS 9, 407–408. [errata, 1971,ibidem, 18, 984].Google Scholar
  47. Mycielski, J., 1977, A lattice of interpretability types of theories, JSL 42, 297–305.Google Scholar
  48. Mycielski, J., 1977, Finististic consistency proofs Google Scholar
  49. Nelson E., 1986, Predicative Arithmetic, Math Notes 32, Princeton University Press, Princeton.MATHGoogle Scholar
  50. Orey, S., 1961, Relative Interpretations, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 7, 146–153.MathSciNetMATHCrossRefGoogle Scholar
  51. Paldch, S., 1973, The lattices of numerations of theories containing Peano’s Arithmetic, Commentationes Mathematicae Universitatis Carolinae 14, 339–359.MathSciNetGoogle Scholar
  52. Parikh, R., 1971, Existence and feasibility in arithmetic, JSL 36, 494–508.MathSciNetMATHCrossRefGoogle Scholar
  53. Paris, J.B., Dimitracopoulos, C., 1982, Truth definitions for 4 o formulae, in: Logic and Algorithmic, Monography 30 de l’Enseignement Mathematique Genève, 319–329.Google Scholar
  54. Paris, J.B., Dimitracopoulos, C., 1983, A note on the undefinability of cuts, JSL 48, 564–569.MathSciNetMATHCrossRefGoogle Scholar
  55. Paris, J., Kirby, L.A.S., 1978, S n -collection schema’s in arithmetic, in: Logic Colloquium ‘77, North Holland, Amsterdam.Google Scholar
  56. Paris, J., Wilkie, A., 1981, Models of arithmetic and the rudimentary sets,Bulletin Soc. Math. Belg. 33, 157–169.MathSciNetMATHGoogle Scholar
  57. Paris, J., Wilkie A., 1983, 0 -sets and induction, in: Guzicki, W. &al eds., Open days in Model Theory and Set Theory, Proceedings of a conference held in September 1981 in Jadwisin, Poland, Leeds University, 237–248.Google Scholar
  58. Paris, J., Wilkie, A., 1987, On the scheme of induction for bounded arithmetic formulas, Annals for Pure and Applied Logic 35, 261–302.MathSciNetMATHCrossRefGoogle Scholar
  59. Pudldk, P., 1983a, Some prime elements in the lattice of interpretability types,Transactions of the AMS 280, 255–275.CrossRefGoogle Scholar
  60. Pudldk, P., 1983b, A definition of exponentiation by a bounded arithmetical formula,Commentationes Mathematicae Universitatis Carolinae 24, 667–671.Google Scholar
  61. Pudldk, P., 1985, Cuts, consistency statements and interpretability,JSL 50, 423–441.CrossRefGoogle Scholar
  62. Pudldk, P., 1986, On the length of proofs of finitistic consistency statements in finitistic theories, in: Paris, J.B. &al eds., Logic Colloquium ‘84, North Holland, 165–196.Google Scholar
  63. Pudldk, P., 1986, A note on bounded arithmetic.Google Scholar
  64. Quincy, J., 1981, Sets of S k conservative sentences are P2 complete, JSL 46, [abstract], 442.Google Scholar
  65. Schwichtenberg, H., Proof Theory: Some Applications of Cut-Elimination, in Barwise, J. ed., Handbook of Mathematical Logic,North Holland, 867–895.Google Scholar
  66. Simpson, S.G., 1988, Partial realizations of Hilbert’s Program, JSL 53, 349–363.MathSciNetMATHCrossRefGoogle Scholar
  67. Smorynski, C., 1985a, Self-Reference and Modal Logic, Springer Verlag.MATHGoogle Scholar
  68. Smorynski, C., 1985b, Nonstandard models and related developments in the work of Harvey Friedman, in: Harrington, L.A. &alii eds., Harvey Friedman’s Research on the Foundations of Mathematics, North Holland, 212–229.Google Scholar
  69. Solovay, R., 1978, On interpretability in set theories. Google Scholar
  70. Svejdar, V., 1978, Degrees of interpretability,Commentationes Mathematicae Universitatis Carolinae 19, 789–813.Google Scholar
  71. Svejdar, V., 1981, A sentence that is difficult to interpret,Commentationes Mathematicae Universitatis Carolinae 22, 661–666.MathSciNetMATHGoogle Scholar
  72. Svejdar, V., 1983, Modal analysis of generalized Rosser sentences,JSL 48, 986–999.MathSciNetMATHCrossRefGoogle Scholar
  73. Takeuti, G., 1988, Bounded arithmetic and truth definition, Annals of Pure & Applied Logic 36, 75–104.MathSciNetCrossRefGoogle Scholar
  74. Tarski, A., Mostowski, A., Robinson, R.M., 1953, Undecidable theories, North Holland, Amsterdam.MATHGoogle Scholar
  75. Visser, A., 1986, Peano’s Smart Children, a provability logical study of systems with built-in consistency, Logic Group Preprint Series nr 14, Dept. of Philosophy, University of Utrecht, Heidelberglaan 2, 3584CS Utrecht. To appear in the Notre Dame Journal ofGoogle Scholar
  76. Visser, A., 1988, Preliminary Notes on Interpretability Logic, Logic Group Preprint Series nr 29, Dept. of Philosophy, University of Utrecht, Heidelberglaan 2, 3584CS Utrecht.Google Scholar
  77. Wilkie, A., 1980a, Some results and problems on weak systems of arithmetic,in: Maclntyre, A. &al eds., Logic Colloquium ‘77, North Holland, Amsterdam, 285–296.Google Scholar
  78. Wilkie, A., 1980b, Applications of complexity theory to Sp-definability problems in arithmetic,in: Model theory of algebra and arithmetic,Lecture Notes in Mathematics 834, Springer, Berlin, 363–369.CrossRefGoogle Scholar
  79. Wilkie, A., 1986, On sentences interpretable in systems of arithmetic,in: Paris, J.B. &al eds., Logic Colloquium ‘84,North Holland, 329–342.Google Scholar
  80. Woods, A.R., 1981, Some problems in logic and number theory, and their connections,Thesis, Manchester University.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Albert Visser
    • 1
  1. 1.Department of PhilosophyUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations