The Structure and Expression of a Human Gene for a Nuclear-Coded Mitochondrial Adenosine Triphosphate Synthase Beta Subunit

  • Shigeo Ohta
  • Hideaki Tomura
  • Kakuko Matsuda
  • Kiyoshi Hasegawa
  • Yasuo Kagawa

Abstract

The beta subunit of mitochondrial ATP synthase is coded on a nuclear genome, synthesized in the cytosol, and then assembled with the other subunits which are coded on the mitochondrial genome. To determine the molecular mechanism by which the expressions on these two genetic systems are coordinated, the gene structure of the human ATP synthase beta subunit was determined, and the structure involved in this expression was analyzed. The gene for the beta subunit was found to be composed of 10 exons. The first exon corresponded to the prepiece peptide for targeting mitochondria. The 5’ upstream region contained three CAT boxes (CCAAT), three GC boxes (CCGCCC) and four repeating sequences, but no typical TATA box. To determine the regulatory structure of the upstream region, fragments of various length were fused with a chloramphenicol acetyltransferase (CAT) gene and then transfected into a cultured cell. A 300 base pairs fragment was sufficient for expressing the CAT activity, and furthermore, the longer fragment (1300 base-pairs) enhanced the expression markedly. This result suggests that the gene for the human ATP synthase beta subunit has a regulatory structure. In addition, a restriction length fragment polymorphism in the gene and an interesting pseudo-gene are reported.

Keywords

Hydroxyl Adenosine Serine Arginine Cytosol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, S., Bankier, A.T., Barrell, B.G., de Bruijin, M.H.L., Coulson, A.R., Drouin, J., Eperon, I.C., Nierlich, D.P., Roe, B.A., Sanger, F., Schreier, P.H., Smith, A.J.H., Staden, R. and Young, I.G. (1981) Nature 290, 457–465.PubMedCrossRefGoogle Scholar
  2. Aquila, H., Misra, D., Eulitz, M. and Klingenberg, M. (1982) Hoppe-Seyler’s Z. Physiol. Chem. 363,345–349.Google Scholar
  3. Benoist, C., O’Hara, K., Breathnach, R. and Chambon, P. (1980) Nucleic Acids Res. 8, 127–142.PubMedCrossRefGoogle Scholar
  4. Boutry, M. and Chua, N-H. (1985) EMBO J. 4, 2159–2166.PubMedGoogle Scholar
  5. Brathnach, R. and Chambon, P. (1981) Ann. Res. Biochem. 50, 349–383.CrossRefGoogle Scholar
  6. Davis, L.G., Dibner, M.D. and Batter, J.F. (1986) Basic Methods in Molecular Biology, Elsevier, Amsterdam.Google Scholar
  7. Gorman, C., Moffat, L. and Haward, B. (1982) Mol. Cell. Biol. 2, 1044–1051.PubMedGoogle Scholar
  8. Hay, R., Boehni, P. and Gasser, S. (1984) Biochim. Biophys. Acta. 779, 65–87.PubMedGoogle Scholar
  9. Kagawa, Y. (1984) in Bioenergetics (Ernster, L., ed.) pp. 149–186, Elsevier, Amsterdam.Google Scholar
  10. Kadonaga, J.T., Jones, K.A. and Tjian, R. (1986) Trends Biochem. Sci. 11, 20–23.Google Scholar
  11. Laimins, L., Khoury, G., Gorman, C., Howard, B.H. and Gruss, P. (1982) Proc. Natl. Acad. Sci. USA 79, 6453–6457.PubMedCrossRefGoogle Scholar
  12. Ohta, S. and Kagawa, Y. (1986) J. Biochem. (Tokyo) 99, 135–141.Google Scholar
  13. Renswick, M.J. and Walker, J.E. (1983) J. Biol. Chem. 258, 3081–3089.Google Scholar
  14. Walker, J.E., Saraste, M., Runswick, M.J. and Gay, N.J. (1982) EMBO J. 1, 945–951.PubMedGoogle Scholar
  15. Williams, R.S. (1986) J. Biol. Chem. 261, 12390–12394.PubMedGoogle Scholar
  16. Young, R.A. and Davis, R.W. (1983) Proc. Natl. Acad. Sci. USA 80, 1194–1198.PubMedCrossRefGoogle Scholar
  17. Yuasa, Y., Srivastava, S.K., Dunn, C.Y., Rhim, J.S., Reddy, E.P. and Aaronson, S.A. (1983) Nature 303, 775–779.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Shigeo Ohta
    • 1
  • Hideaki Tomura
    • 1
  • Kakuko Matsuda
    • 1
  • Kiyoshi Hasegawa
    • 1
  • Yasuo Kagawa
    • 1
  1. 1.Department of BiochemistryJichi Medical School Minamikawachi-machiTochigi-kenJapan

Personalised recommendations