ATP Synthesis Driven by Intramembranal Protons

  • Hagai Rottenberg
  • Todd P. Silverstein
  • Ken Hashimoto
  • Sonia Steiner-Mordoch


Recent evidence from several laboratories suggest the existence of a direct, intramembranal, proton pathway between the redox H+-pumps and the ATPase H+- pump in addition to the bulk to bulk pathway [reviewed in Rottenberg (1985), Ferguson (1985) and Westerhoff et al. (1984)]. We have suggested previously that collisions and dynamic aggregation of the mitochondrial inner membrane proteins enhance direct intramembranal proton transfer and thus energy conversion (Rottenberg 1978, 1985). We have shown previously that ambient temperature strongly affects the degree of coupling of oxidative phosphoiylation in rat liver mitochondria. In high temperatures there is a significant reduction of both the respiratory control (Rottenberg, 1978) and the State 4 phosphate potential, ΔGp (Rottenberg et al. 1985). This reduction of respiratory control and phosphate potential at elevated temperatures is not due to reduction of Δμ H which, in fact, increases slightly at elevated temperatures (Rottenberg et al. 1985). Thus, despite an increase in Δμ H, the efficiency of coupling, as reflected in the ΔGp/Δμ H ratio, is decreased (Fig. 1, Rottenberg et al., 1985). Moreover, in liver mitochondria isolated from ethanol-fed rats (in which the concentration of the redox and the ATPase H+- pumps are greatly reduced), the ratio ΔGp/Δμ H is reduced at all temperatures even though Δμ H is the same as in control rats. These data are compatible with the suggestion that efficient energy conversion depends on the frequency of collisions and the extent of dynamic aggregation of the inner membrane proteins.


Free Fatty Acid Oxidative Phosphorylation Respiratory Control Dynamic Aggregation Submitochondrial Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blazk, J.F. and Newman, J.L. (1980) Biochim. Biophys. Acta 600, 1007–1011.CrossRefGoogle Scholar
  2. Cain, D.B. and Simoni, R.D. (1986) J. Biol. Chem. 261, 10043–10050.PubMedGoogle Scholar
  3. Cox, G.B., Jans, D.A., Gibson, F., Langman, L., Senior, A.E. and Fimmel, A.L. (1983) Biochem J. 216, 143–150.PubMedGoogle Scholar
  4. Coke, M., Restall, C.J., Kemp, C.M. and Chapman, D. (1986) Biochemistry 25, 513–518.CrossRefGoogle Scholar
  5. Cox, G.B., Fimmel, A.L., Gibson, F. and Hatch, L (1986) Biochim. Biophys. Acta 849, 62–69.CrossRefGoogle Scholar
  6. Ferguson, S.J. (1985) Biochim. Biophys. Acta 811, 47–95.Google Scholar
  7. Hochli, M. and Hackenbrock, G.R. (1976) Proc. Natl. Acad. Sci. USA 76, 1236–1240.CrossRefGoogle Scholar
  8. Hoppe, J. and Sebald, W. (1984) Biochim. Biophys. Acta 768, 1–27.PubMedGoogle Scholar
  9. Hoppe, J., Brunner, J. and Jorgensen B.B. (1984) Biochemistry 23, 5610–5616.PubMedCrossRefGoogle Scholar
  10. Kawata, S., Lehner, C., Muller, M., Cherry, R.J. (1982) J. Biol. Chem. 257, 6470–6476.Google Scholar
  11. Linnet, P.E., Mitchell, A.D., Portis, M.D. and Beechey, R.B. (1979) Methods Enzymol. 55, 337–343.CrossRefGoogle Scholar
  12. Pedersen, P.L. and Hullihen, J. (1979) Methods Enzymol. 55,736–741.PubMedCrossRefGoogle Scholar
  13. Pringle, M.J. and Taber, M. (1985) Biochemistry 24, 7366–7371.PubMedCrossRefGoogle Scholar
  14. Rottenberg, H. (1978) FEBS Lett. 94,295–297.PubMedCrossRefGoogle Scholar
  15. Rottenberg, H. (1983) Proc. Natl. Acad. Sci. USA 80, 3313–3317.PubMedCrossRefGoogle Scholar
  16. Rottenberg, H. (1985) Modern Cell Biol. 4, 47–83.Google Scholar
  17. Rottenberg, H. and Hashimoto, K. (1986) Biochemistry 25, 1747–1755.PubMedCrossRefGoogle Scholar
  18. Rottenberg, H. and Steiner-Mordoch. S. (1986) FEBS Lett. 202, 314–318.PubMedCrossRefGoogle Scholar
  19. Rottenberg, H., Robertson, D.E. and Rubin, E. (1980) Lab. Inv. 42, 318–326.Google Scholar
  20. Rottenberg, H., Robertson, D.E. and Rubin, E. (1985) Biochim. Biophys. Acta. 809,1–10.PubMedCrossRefGoogle Scholar
  21. Silverstein, T. and Rottenberg, H. (1987) Biophysical J. 489a.Google Scholar
  22. Waring, A.J., Rottenberg, H., Ohnishi, T. and Rubin, E. (1982) Arch. Biochem. Biophys. 216, 51–61.PubMedCrossRefGoogle Scholar
  23. Westerhoff, H.V., Melandri, B.A., Venturoli, G., Azzone, G.F. and Kell, D.B. (1984) Biochim. Biophys. Acta 768, 257.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Hagai Rottenberg
    • 1
  • Todd P. Silverstein
    • 1
  • Ken Hashimoto
    • 1
  • Sonia Steiner-Mordoch
    • 1
  1. 1.Department of PathologyHahnemann UniversityPhiladelphiaUSA

Personalised recommendations