Density Functional Theory at Finite Temperatures

  • Reiner M. Dreizler
Part of the NATO ASI Series book series (NSSB, volume 216a)


Standard density functional theory at T = 0 deals (mainly) with the discussion of groundstate properties of quantum many particle systems. It has been applied to atoms, molecules, solids and nuclei1). The simpler versions of this theory (extensions of the Thomas-Fermi model) yield quite acceptable insight at reasonable labour, while the more sophisticated versions (inclusion of correlation contributions within the Kohn-Sham scheme) produce high quality results.


Density Operator Equilibrium Density High Quality Result Correlation Contribution Density Functional Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 1a.).
    S. Lundqvist and N.H. March, eds. “Theory of the Inhomogeneous Electron Gas”, Plenum Press, New York, 1983Google Scholar
  3. 1b.).
    R.M. Dreizler and J. da Providencia, eds. “Density Functional Methods in Physics”, Nato ASI Series 123, Plenum Press, New York, 1985.CrossRefGoogle Scholar
  4. 2.
    For a more detailed review see:Google Scholar
  5. 2b.
    U. Gupta and A.K. Rajagopal, Phys. Rep. 87:259(1982).ADSCrossRefGoogle Scholar
  6. 3.
    Some indications are given in:Google Scholar
  7. 3b.
    R.M. Dreizler and H. Kohl, in: Lecture Notes in Physics,256. J. Broeckhove, L. Lathouwers and P. van Leuven eds. Springer Verlag, Berlin, 1986, p. 51Google Scholar
  8. 4.
    P. Hohenberg and W. Kohn, Phys. Rev.136:B864(1964).MathSciNetADSCrossRefGoogle Scholar
  9. 5.
    N.D. Mermin, Phys. Rev. 137:A1441(1965).MathSciNetADSCrossRefGoogle Scholar
  10. 6.
    See e.g. E.H. Lieb in lb, p. 31.Google Scholar
  11. 7.
    W. Kohn and L.J. Sham, Phys. Rev. 14o:A1133(l965).MathSciNetGoogle Scholar
  12. 8.
    See e.g. P. Bonche and D. Vautherin, Nucl. Phys. A372:496(1981).ADSGoogle Scholar
  13. 9.
    R. Feynman, N. Metropolis and E. Teller, Phys. Rev. 75:1561(1949)ADSMATHCrossRefGoogle Scholar
  14. 9b.
    R.E. Marshak and H. Bethe, Astrophys. J. 91:239(1940).ADSMATHCrossRefGoogle Scholar
  15. 10.
    F. Perrot, Phys. Rev. A26:1035(1979).ADSGoogle Scholar
  16. 11.
    M. Brack,Phys. Rev.Lett. 53:119(1984);ADSCrossRefGoogle Scholar
  17. 11b.
    M. Brack erratum: ibid, 54:851(1985).ADSCrossRefGoogle Scholar
  18. 12.
    J. Bartel, M. Brack and M. Durand, Nucl. Phys. A445:263(1985).ADSGoogle Scholar
  19. 13.
    A.Y. Polischuk, Sol. St.Comm. 61:193(1987).ADSCrossRefGoogle Scholar
  20. 14.
    U. Gupta and A.K. Rajagopal, Phys. Rev. A21:2064(1980).ADSGoogle Scholar
  21. 15.
    U. Gupta and A.K. Rajagopal, Phys. Rev. A22:2792(1980).ADSGoogle Scholar
  22. 16.
    M. Brack, C. Guet and H.B. Hakansson, Phys. Rep. 123:275(1985).ADSCrossRefGoogle Scholar
  23. 17.
    F. Perrot, Phys. Rev. A25:489(1982)ADSGoogle Scholar
  24. 17b.
    F. Perrot, Phys. Rev. A26:1035(1982).ADSGoogle Scholar
  25. 18.
    U. Gupta and A.K. Rajagopal, J. Phys. B12:L703(1979).ADSGoogle Scholar
  26. 19.
    M.W.C. Dharma-Wardana and R. Taylor,Can.J.Phys. C14:629(1981).ADSGoogle Scholar
  27. 20.
    For the case T = 0 see: E. Engel and R.M. Dreizler, Phys. Rev. A35:3607(1987)ADSGoogle Scholar
  28. 20b.
    R.M.Dreizler, E. Engel and P. Malzacher, in: “Physics of Strong Fields”,Nato ASI Series 153, W. Greiner, ed. Plenum Press, New York, 1987, p.565.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Reiner M. Dreizler
    • 1
  1. 1.Institut für Theoretische PhysikUniversität Frankfurt/MainWest Germany

Personalised recommendations