The Relativistic BUU Approach — Analysis of Retardation Effects and Thermal Properties

  • Bernhard Blättel
  • Volker Koch
  • Andreas Lang
  • Klaus Weber
  • Wolfgang Cassing
  • Ulrich Mosel
Part of the NATO ASI Series book series (NSSB, volume 216a)

Abstract

The study of the nuclear equation of state (EOS) is one of the major goals in high energy heavy-ion collisions. However, it has turned out that the extraction of reliable information about the EOS is a nontrival task. Theoretical investigations, like simulations of the Boltzmann-Uehling-Uhlenbeck (BUU) equation have to include the momentum dependence of the mean-field potential [1] and should also study the sensitivity of the observables on the medium modifications of the nucleon-nucelon cross section [2]. Therefore, at bombarding energies in the order of 1 GeV/nucleon a relativistic treatment, which consistently includes these features, is necessary. In this spirit, a relativistic transport approach has been proposed and investigated [3,4,5,6]. Together with a relativistic generalization of the BUU transport equation one obtains equations of motion for the meson-fields which mediate interactions. In the first part of this contribution we present results which include the full solution of these field-equations and compare to different approximations. In particular we address the question of possible retardation effects in the case of fast moving nucleon sources. In the second part we investigate to which extend thermodynamic approaches are suited for the description of heavy-ion collisions at the considered energies and masses. We therefore calculate the pressures reached during the simulation in our microscopic approach and extract the size and the temperature of the equilibrated regions.

Keywords

Anisotropy Compressibility Verse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Gale, G. Bertsch, and S. Das Gupta, Phys.Rev.C35 1966 (1987);ADSGoogle Scholar
  2. [1b]
    J. Aichelin, A. Rosenhauer, G.Peilert, H. Stöcker, and W. Greiner, Phys. Rev. Lett. 58 1926 (1987)ADSCrossRefGoogle Scholar
  3. [2]
    G.F. Bertsch, G.E. Brown, V. Koch, and B.-A. Li, Nucl.Phys. A490 745 (1988)ADSGoogle Scholar
  4. [3]
    H.-Th. Elze, M. Gyulassy, D. Vasak, H. Heinz, H. Stöcker, and W. Greiner,Mod.Phys.Lett. 2 451 (1987)ADSCrossRefGoogle Scholar
  5. [4]
    C.M. Ko, and Q. Li, Phys.Rev. C37 2270 (1988)ADSGoogle Scholar
  6. [5]
    B. Blättel, V. Koch, W. Cassing, and U. Mosel, Phys.Rev. C38 1767 (1988)ADSGoogle Scholar
  7. [6]
    H. Feldmeier, M. Schönhofen, and M. Cubero,Nucl.Phys. A495 337c (1989)ADSGoogle Scholar
  8. [7]
    T. Matsui,Nucl.Phys. A370 365 (1981)ADSGoogle Scholar
  9. [8]
    V. Koch, U. Mosel, T. Reitz, Chr. Jung, and K. Niita, Phys. Lett. 206B 395 (1988)ADSGoogle Scholar
  10. [9]
    C.J. Horowitz, Proc. of the International Workshop on Gross Properties of Nuclei and Nuclear Excitations XVI, Hirschegg(Austria) ed. by H. Feldmeier, p.10, (1988)Google Scholar
  11. [10]
    R.Y. Cusson, P.-G. Reinhard, J.J. Molitoris, H. Stöcker, and W. Greiner, Phys. Rev. Lett. 55 2786 (1985)ADSCrossRefGoogle Scholar
  12. [10b]
    J.J Bai, R.Y. Cussen, J. Wu, P.-G. Reinhard, H. Stöcker, and W. Greiner, Z.Phys. A326 269 (1987)ADSGoogle Scholar
  13. [11]
    B.S. Serot, and J.D. Walecka, Adv.Nucl.Phys.16 1 (1986)Google Scholar
  14. [11b]
    J.W. Negele and E. Vogt, eds. (Plenum Press)Google Scholar
  15. [12]
    Y.B. Ivanov, Nucl.Phys. A474 693 (1987).ADSGoogle Scholar
  16. [12b]
    P.A. Henning, and B.L. Friman, Nucl.Phys. A490 689 (1988)ADSGoogle Scholar
  17. [13]
    J. Cugnon, T. Mizutani, and J. Vandermeulen, Nucl.Phys. A352 505 (1981)ADSGoogle Scholar
  18. [14]
    R.U. Sexl, and H.K. Urbantke, “Relativität Gruppen Teilchen”, Springer Verlag, Wien, New York (1976)Google Scholar
  19. [15]
    J. Harris et al., Phys.Lett. 153B 377 (1985),ADSGoogle Scholar
  20. [15b]
    J. Harris et al Phys.Rev.Lett. 58 463 (1987)ADSCrossRefGoogle Scholar
  21. [16]
    A.Lang et al., to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Bernhard Blättel
    • 1
  • Volker Koch
    • 1
  • Andreas Lang
    • 1
  • Klaus Weber
    • 1
  • Wolfgang Cassing
    • 1
  • Ulrich Mosel
    • 1
  1. 1.Institut für Theoretische PhysikUniversität GiessenGiessenWest Germany

Personalised recommendations