Monte Carlo Study of Confidence Region Accuracy for MEG Inverse Dipole Solutions

  • L. Goldstein
  • P. Teale
  • M. Reite

Abstract

Localization and characterization of neuromagnetic sources is often attempted assuming the model of a dipole current source in a spherical homogeneous conductor volume and solving the inverse problem for a given measured external field (Tanday (1987)). Evaluation of experimental results and clinical procedures also requires accurate confidence regions. Statistical methods exist for defining these regions by analyzing the fit of the data to the best fit model prediction without independent estimates of the measurement noise. We have empirically evaluated three of these methods in a Monte Carlo study.

Keywords

Boulder 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dennis, Jr, J.E. and Schnabel, Robert B. (1983). Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall Inc., Englewood Cliffs N.J.Google Scholar
  2. Donaldson, Janet R., (1985), Computation Experience with Confidence Regions. Thesis, Univ. of Colorado at Boulder.Google Scholar
  3. Halperin, M. (1963) “Confidence Interval Estimation in Nonlinear Regression”, Journal of the Royal Statistical Society (B), 25(2), pp 330–333.Google Scholar
  4. Hartley, H.O. (1964). “Exact Confidence Regions for the parameters in Nonlinear Regression Laws”, Biometrika, 51(3,4) pp. 347–353.Google Scholar
  5. Maksoudian, Y. Leon (1969). Probability and Statistics, with Applications. International Textbook Co., Scranton, PA. Pg. 188.Google Scholar
  6. Tanday, B.S. and Swithenby, S.J. (1987). “Analysis of Magnetoencephalographic data using the homogeneous sphere model: empirical tests”, Physics in Medicine and Biology, 32(1), pp. 105–413.CrossRefGoogle Scholar
  7. Williams, E.J. (1962). “Exact Fiducial Limits in Nonlinear Estimation”, Journal of the Royal Statistical Society (B), 24(1), pp.125–139.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • L. Goldstein
    • 1
  • P. Teale
    • 1
  • M. Reite
    • 1
  1. 1.Department of PsychiatryUniversity of Colorado Health Sciences CenterDenverUSA

Personalised recommendations