Skip to main content

Ultrastructure of Primary Afferent Terminals in the Spinal Cord

  • Chapter
The Primary Afferent Neuron

Abstract

Primary afferent fibers (PAF) arborize and terminate in the spinal gray matter with characteristic arborizations and terminal structures. The arborizations blend into the neuropil, i.e., they are tangential in lamina I, sagittally oriented sheets in laminae II and III, discs oriented in the transverse plane in the intermediate zone as well as in the ventral horn, and narrow rostro-caudally oriented bundles in Clarke’s column.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bannatyne, B. A., Maxwell, D. J., Fyffe, R. E., and Brown, A. G., 1984, Fine structure of primary afferent axon terminals of slowly adapting cutaneous receptors in the cat, Quart J. Exp. Physiol., 69:547–557

    CAS  Google Scholar 

  • Barber, R. P., Vaughn, J. E., Saito, K., McLaughlin, B. J., and Roberts, E., 1978, GABAergic terminals are presynaptic to primary afferent terminals in the substantia gelatinosa of the rat spinal cord, Brain Res., 141:35–55

    Article  PubMed  CAS  Google Scholar 

  • Beattie, M. S., Bresnahan, J. C., and King, J. S., 1978, Ultrastructural identification of dorsal root primary afferent terminals after anterograde filling with horseradish peroxidase, Brain Res., 153:127–134

    Article  PubMed  CAS  Google Scholar 

  • Bodian, D, 1966, Synaptic types on spinal motoneurons: an electron microscopic study, Bull. Johns Hopkins Hosp., 119:16–45

    Google Scholar 

  • Brown, A. G., 1981, “Organization in the spinal cord,” Springer Verlag, Berlin-Heidelberg New York.

    Google Scholar 

  • Burgess, P. R., and Perl, E. R., 1967, Myelinated afferent fibres responding specifically to noxious stimulation of the skin, J. Physiol. (Lond.), 190:541–562

    CAS  Google Scholar 

  • Carlton, S. M., McNeill, D. L., Chung, K., and Coggeshall, R.E., 1988, Organization of calcitonin gene-related peptide-immunoreactive terminals in the primate dorsal horn, J. Comp. Neurol., 276:527–536

    Article  PubMed  CAS  Google Scholar 

  • Coimbra, A., Sodre-Borges, B. P., Magalhaes M. M., 1974, The substantia gelatinosa olandi of the rat. Fine structure, cytochemistry (acid phosphatase) and changes after dorsal root section, J. Neurocytol., 3:199–217

    Article  PubMed  CAS  Google Scholar 

  • Conradi, S., 1969, Ultrastructure and distribution of neuronal and glial elements on the motoneuron surface in the lumbosacral spinal cord of the adult cat, Acta Physiol. Scand., Suppl. 332:5–48

    CAS  Google Scholar 

  • Conradi, S., Culheim, S., Gollvik D., and Kellerth, J. O., 1983, Electron microscopic observations on the synaptic contacts of group Ia muscle spindel afferents in the cat lumbosacral spinal cord, Brain Res., 265:31–39

    Article  PubMed  CAS  Google Scholar 

  • Gobel, S., 1974, Synaptic organization of the substantia gelatinosa glomeruli in the spinal trigeminal nucleus of the adult cat, J. Neurocytol., 3:219–243

    Article  PubMed  CAS  Google Scholar 

  • Ellis, L. C., and Rustioni, A., 1981, A correlative HRP, Golgi and EM study of the intrinsic organization of the feline dorsal column nuclei, J. Comp. Neurol., 197:341–367

    Article  PubMed  Google Scholar 

  • Fyffe, R. E. W., Cheema, S. S., Light, A. R., and Rustioni, A., 1985, The organization of neurons and afferent fibers in the cat cuneate nucleus, in: Development, Organization and Processing in Somatosensory Pathways, M. Rowe and W. D. Willis, Jr., ed., Alan R. Liss, New York, pp 163–173

    Google Scholar 

  • Fyffe, R. E. W., and Light, A. R, 1984, The ultrasructure of group la afferent fiber synapses in the lumbosacral spinal cord of the cat, Brain Res., 300:201–209

    Article  PubMed  CAS  Google Scholar 

  • Heimer, L., and Wall, P. D., 1968, The dorsal root distribution to the substantia gelatinosa of the rat with a note on the distribution in the cat, Exp. Brain Res., 6:89–99

    Article  PubMed  CAS  Google Scholar 

  • Honda, C. N., Réthelyi, M., and Petrusz, P., 1982, Preferential immunohistochemical localization of vasoactive intestinal polypeptide (VIP) in the sacral spinal cord of the cat: light and electron microscopic observations, J. Neuroscience, 3:2183–2196

    Google Scholar 

  • Imai, Y., and Kusama, T., 1969, Distribution of the dorsal root fibers in the cat. An experimental study with the Nauta method, Brain Res., 13:338–359

    Article  PubMed  CAS  Google Scholar 

  • Jancsó, G., and Kiraly, E., 1980, Distribution of chemosensitive primary sensory afferents in the central nervous system of the rat, J. Comp. Neurol., 190:781–792

    Article  PubMed  Google Scholar 

  • Knyihár, E., Laszlo I., and Tornyos S., 1974, Fine structure and fluoride resistant acid phosphatase activity of electron dense sinusoid terminals in the substantia gelatinosa Rolandi of the rat after dorsal root transection, Exp. Brain Res., 19:529–544

    Article  PubMed  Google Scholar 

  • Knyihár-Csillik, E., Csillik, B., and Rakic P., 1982, Periterminal synaptology of primary afferents in the primate substantia gelatinosa, J. Comp. Neurol., 210:376–399

    Article  PubMed  Google Scholar 

  • LaMotte, C., 1977, Distribution of the tract of Lissauer and the dorsal root fibers in the primate spinal cord, J. Comp. Neurol., 172:529–561

    Article  PubMed  CAS  Google Scholar 

  • Lasek, R., Joseph B. S., and Whitlock D. G., 1968, Evaluation of a radioautographic neuroanatomical tracing method, Brain Res., 8:319–336

    Article  PubMed  CAS  Google Scholar 

  • Light, A. R., and Perl, E. R., 1979, Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers, J. Comp. Neurol., 186:133–150

    Article  PubMed  CAS  Google Scholar 

  • Maxwell, D. J., and Bannatyne, B. A., 1983, Ultrastructure of muscle spindle afferent terminations in lamina VI of the cat spinal cord, Brain Res., 288:297–301

    Article  PubMed  CAS  Google Scholar 

  • Maxwell, D. J., Bannatyne, B. A., Fyffe R. E. W., and Brown, A. G., 1982, Ulrastructure of hair follicle afferent fiber terminations in the spinal cord of the cat, J. Neurocytol., 11:571–582

    Article  PubMed  CAS  Google Scholar 

  • Maxwell, D. J., Bannatyne, B. A., Fyffe R. E., and Brown, A. G., 1984a, Fine structure of primary afferent axon terminals projecting from rapidly adapting mechanoreceptors of the toe and foot pads of the cat, Quart J. Exp. Physiol., 69:381–392

    CAS  Google Scholar 

  • Maxwell, D. J., Fyffe, ER. E. W., and Brown, A. G., 1984b, Fine structure of normal and degenerating primary afferent boutons associated with characterized spinocervical tract neurons in the cat, Neuroscience, 12:151 –163

    Article  CAS  Google Scholar 

  • Maxwell, D. J., and Noble, R., 1987, Relatiosnships between hair follicle afferent terminations and glutamic acid decarboxyalse -containing boutons in the cat’s spinal cord, Brain Res., 408:308–312

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin, B. J., 1972, Dorsal root projections to the motor nuclei in the cat spinal cord, J. Comp. Neurol., 144:461–474

    Article  Google Scholar 

  • Ralston, H. J. III., 1968, The fine structure of neurons in the dorsal horn of the cat spinal cord, J. Comp. Neurol., 132:275–301

    Article  PubMed  Google Scholar 

  • Ralston, H. J. III., 1979, The fine structure of laminae I, II and III of the Macaque spinal cord, J. Comp. Neurol., 184:619–641

    Article  PubMed  Google Scholar 

  • Ralston, H. J. III., Ralston, D. D., 1979a, The distribution of dorsal root axons in laminae I, II and III of the Macaque spinal cord: a quntitqtive electron microscopic study, J. Comp. Neurol., 184:643–684

    Article  Google Scholar 

  • Ralston, H. J., and Ralston, D. D., 1979b, Identification of dorsal root synaptic terminals on monkey ventral horn cells by electron microscopic autoradiography, J. Neurocytol., 8:151–166

    Article  CAS  Google Scholar 

  • Ralston H. J. III., Light, A. R, Ralston D. D., and Perl, E. R., 1984, Morphology and synaptic relationships of physiologically identified low-threshold dorsal root axons stained with intraaxonal horseradish peroxidase in the cat and monkey, J. Neurophysiol., 51:777–792

    PubMed  Google Scholar 

  • Réthelyi, M., 1970, Ultrastructural synaptology of Clarke’s column, Exp. Brain Res., 11:159–174

    PubMed  Google Scholar 

  • Réthelyi, M., 1976, Central core in the spinal grey matter, Acta morph. Acad. Sci. hung., 24:63–70

    Google Scholar 

  • Réthelyi, M., 1977, Preterminal and terminal axon arborizarions in the substantia gelatinosa of cat’s spinal cord, J. Comp. Neurol., 172:511–528

    Article  PubMed  Google Scholar 

  • Réthelyi, M., Light A. R., and Perl, E.R., 1982, Synaptic complexes formed by functionally defined primary afferent units with fine myelinated fibers, J. Comp. Neurol., 207:381–393

    Article  PubMed  Google Scholar 

  • Réthelyi, M., and Szentágothai, J., 1969, The large synaptic complexes of the substantia gelatinosa, Exp. Brain Res., 7:258–274

    Article  PubMed  Google Scholar 

  • Réthelyi, M., Trevino, D. L., and Perl, E. R., 1979, Distribution of primary afferent fibers within the sacrococcygeal dorsal horn: An autoradiographic study, J. Comp. Neurol., 185:603–622

    Article  PubMed  Google Scholar 

  • Rexed, B., 1952, The cytoarchitectonic organization of the spinal cord in the cat, J. Comp. Neurol., 96:415–466

    Article  Google Scholar 

  • Saito, K., 1974, The synaptology and cytology of the Clarke cell in nucleus dorsalis of the cat: An electron microscopic study, J. Neurocytol., 3:179–197

    Article  PubMed  CAS  Google Scholar 

  • Scheibel, M. E., Scheibel, A. B., 1968, Terminal axonal patterns in cat spinal cord. II. The dorsal horn, Brain Res., 9:32–58

    Article  PubMed  CAS  Google Scholar 

  • Schimert, J., 1939, Das verhalten des Hinterwurzelkollateralen im Ruckenmark, Z. Anat. Entwickl., 109:665–687

    Article  Google Scholar 

  • Semba, K., Masarachia, P., Malamed, S., Jacquin, M., Harris, S., Yang G., and Egger, M.D., 1983, An electron microscopic study of primary afferent terminals from slowly adapting type I receptors in the cat, J. Ccom. Neurol., 221:466– 481

    Article  CAS  Google Scholar 

  • Semba, K,. Masarachia, P., Malamed, S., Jacquin, M., Harris, S., Yang G., and Egger, M. D., 1984, Ultrastructure of pacinian corpuscle primary afferent terminals in the cat spinal cord, Brain Res., 302:135–150

    Article  PubMed  CAS  Google Scholar 

  • Semba, K., Masarachia, P., Malamed, S., Jacquin, M., Harris, S., Yang G., and Egger, M. D., 1985, An electron microscopic study of terminals of rapidly adapting mechanoreceptive afferent fibers in the cat spinal cord, J. Comp. Neurol., 232:229–240

    Article  PubMed  CAS  Google Scholar 

  • Sprague, J. M., Ha, H., 1964, The terminal fields of dorsal root fibers in the lumbosacral spinal cord of the cat and the dendritic organization of the motor nuclei in: Organization of the spinal Cord, J. C. Eccles, J. P. Schade, ed., Progr. Brain Res., 11:120–152

    Chapter  Google Scholar 

  • Sterling, R., Kuypers, H. G. J. M., 1967, Anatomical organization of the brachial spinal cord of the cat. I. The distribution of dorsal root fibers, Brain Res., 4:1–15

    Article  PubMed  CAS  Google Scholar 

  • Sternberger, L. A., 1986, “Immunocytochemistry,” Churchill Livingstone, New York

    Google Scholar 

  • Sugiura, Y., Lee, C. L., and Perl, E. R., 1986, Central projections of identified, unmyelinated (C) afferent fibers innervating mammalian skin, Science, 234:358–361

    Article  PubMed  CAS  Google Scholar 

  • Szentágothai, J., and Albert, A., 1955, The synaptology of Clarke’s column. Acta Morph. Acad. Sci. Hung., 5:43–51

    Google Scholar 

  • Todd, A. J., 1988, Electron microscope study of Golgi-stained cells in lamina II of the rat spinal dorsal horn, J. Comp. Neurol., 275:145–157

    Article  PubMed  CAS  Google Scholar 

  • Walberg, F., 1966, The fine structure of the cuneate nucleu in normal cats and following interruption of afferent fibers. An electron microscopical study with particular refernce to findings made in Glees and Nauta sections, Exp. Brain Res., 2:107–128

    Article  PubMed  CAS  Google Scholar 

  • Walmsley, B., Wieniawa-Narkiewicz, E., and Nicol, M. J., 1985, The ultrastructural basis for synaptic transmission between primary muscle afferents and neurons in Clarke’s column of the cat, J. Neurosci., 5:2095–2106

    PubMed  CAS  Google Scholar 

  • Walmsley, B., Wieniawa-Narkiewitz, E., and Nicol, M. J., 1987, Ultrasructural evidence related to presynaptic inhibition of primary muscle afferents in Clarke’s column of the cat, J. Neurosci., 7:236–243

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Réthelyi, M. (1990). Ultrastructure of Primary Afferent Terminals in the Spinal Cord. In: Zenker, W., Neuhuber, W.L. (eds) The Primary Afferent Neuron. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0579-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0579-8_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7875-7

  • Online ISBN: 978-1-4613-0579-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics