Relationship between Functional and Morphological Properties in Single Primary Afferent Neurons

  • S. Mense


This report presents data obtained from single primary afferent neurons at two different levels, namely in the dorsal root ganglion (DRG) and in the spinal dorsal horn where the terminal arborizations are formed. The morphology of DRG cells has been the subject of anatomical studies for almost a century (for a review, see Lieberman, 1976). However, many questions remained unsolved, e.g., those concerning the quantitative correlation between soma dimension and axonal conduction velocity, or the presence of axonal branching in or in the vicinity of the ganglion. Since the advent of the technique of intracellular recording and staining of individual cells, these questions have gained new interest and several investigations dealing with these problems have appeared recently.


Dorsal Root Ganglion Dorsal Horn Conduction Velocity Dorsal Root Ganglion Cell Soma Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bahr, R., Blumberg, H., and Jänig, W., 1981, Do dichotomizing afferent fibers exist which supply visceral organs as well as somatic structures? A contribution to the problem of referred pain, Neurosci. Lett., 24:25PubMedCrossRefGoogle Scholar
  2. Brown, A. G., 1981, “Organization in the spinal cord. The anatomy and physiology of identified neurones,” Springer, Berlin, Heidelberg, New York.Google Scholar
  3. Brown, A. G., and Franz, D. N., 1969, Responses of spinocervical tract neurones to natural stimulation of identified cutaneous receptors, Exp. Brain Res., 7:231PubMedCrossRefGoogle Scholar
  4. Bryan, R. N., Trevino, D. L., Coulter, J. D., and Willis, W. D., 1973, Location and somatotopic organization of the cells of origin of the spino-cervical tract, Exp. Brain Res., 17:177PubMedCrossRefGoogle Scholar
  5. Cajal, S. R. y, 1906, Die Struktur der sensiblen Ganglien des Menschen und der Tiere, Anat. Hefte, 2. Abtig., 16:177Google Scholar
  6. Cameron, A. A., Leah, J. D., and Snow, P. J., 1986, The electrophysiological and morphological characteristics of feline dorsal root ganglion cells, Brain Res., 362:1PubMedCrossRefGoogle Scholar
  7. Carstens, E., and Trevino, D. L., 1978, Anatomical and physiological properties of ipsilaterally projecting spinothalamic neurons in the second cervical segment of the cat’s spinal cord, J. Comp. Neurol., 182:167PubMedCrossRefGoogle Scholar
  8. Chung, K., and Coggeshall, R. E., 1984, The ratio of dorsal root ganglion cells to dorsal root axons in sacral segments of the cat, J. Comp. Neurol., 225:24PubMedCrossRefGoogle Scholar
  9. Craig, A. D., 1976, Spinocervical tract cells in the cat and dog, labeled by the retrograde transport of horseradish peroxidase, Neurosci. Lett., 3:173PubMedCrossRefGoogle Scholar
  10. Craig, A. D., and Kniffki, K.-D., 1985, Spinothalamic lumbosacral lamina I cells responsive to skin and muscle stimulation in the cat, J. Physiol. (Lond.), 365:197Google Scholar
  11. Devor, M., Wall, P. D., and McMahon, S. B., 1984, Dichotomizing somatic nerve fibers exist in rats but they are rare, Neurosci. Lett., 49:187Google Scholar
  12. Dogiel, A. S., 1897, Zur Frage über den feineren Bau der Spinalganglien und deren Zellen bei Säugetieren, Int. Monatsschrift für Anat. u. Physiologie, 14:73Google Scholar
  13. Fyffe, R. E. W., 1979, The morphology of group II muscle afferent fibre collaterals, J. Physiol. (Lond.), 296:39PGoogle Scholar
  14. Graham, R. C., and Karnovsky, M. J., 1966, The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique, J. Histochem. Cytochem., 14:291PubMedCrossRefGoogle Scholar
  15. Ha, H., 1970, Axonal bifurcation in the dorsal root ganglion of the cat: a light and electron microscopic study, J. Comp. Neurol., 140:227PubMedCrossRefGoogle Scholar
  16. Harper, A. A., and Lawson, S. N., 1985, Conduction velocity is related to morphological cell type in rat dorsal root ganglion neurones, J. Physiol. (Lond.), 359:31Google Scholar
  17. Hoheisel, U., and Mense, S., 1987, Observations on the morphology of axons and somata of slowly conducting dorsal root ganglion cells in the cat, Brain Res., 423:269PubMedCrossRefGoogle Scholar
  18. Hoheisel, U., and Mense, S., 1987, Observations on the morphology of axons and somata of slowly conducting dorsal root ganglion cells in the cat, Brain Res., 423:269PubMedCrossRefGoogle Scholar
  19. Langford, L. A., and Coggesshall, R. E., 1981, Branching of sensory axons in the peripheral nerve of the rat, J. Comp. Neurol., 203:745PubMedCrossRefGoogle Scholar
  20. Lee, K. H., Chung, K., Chung, J. M., and Coggeshall, R. E., 1986, Correlation of cell body size, axon size, and signal conduction velocity for individually labelled dorsal root ganglion cells in the cat, J. Comp. Neurol., 243:335PubMedCrossRefGoogle Scholar
  21. Lieberman, A. R., 1976, Sensory ganglia, in: “The Peripheral Nerve,” D. N. Landon (ed.), Wiley, New YorkGoogle Scholar
  22. Lloyd, D. P. C., 1943, Neuron patterns controlling transmission of ipsilateral hind limb reflexes in cat, J. Neurophysiol., 6:293Google Scholar
  23. Mei, N., 1983, Sensory structures in the viscera, Progr. Sensory Physiol., 4:1Google Scholar
  24. Mense, S., and Craig, A. D., 1988, Spinal and supraspinal terminations of primary afferent fibers from the gastrocnemius-soleus muscle in the cat, Neuroscience, 26:1023PubMedCrossRefGoogle Scholar
  25. Mense, S., Light, A. R., and Perl, E. R., 1981, Spinal terminations of subcutaneous high-threshold mechanoreceptors, in: “Spinal cord sensation,” A. G. Brown and M. Réthelyi (eds.), Scottish Academic Press, EdinburghGoogle Scholar
  26. Paintal, A. S., 1967, A comparison of the nerve impulses of mammalian non-medullated nerve fibres with those of the smallest diameter medullated fibres, J. Physiol. (Lond.), 193:523Google Scholar
  27. Pierau, F.-K., Taylor, D. C. M., Abel, W., and Friedrich, B., 1982, Dichotomizing peripheral fibres revealed by intracellular recording from rat sensory neurones, Neurosci. Lett., 31:123PubMedCrossRefGoogle Scholar
  28. Rexed, B., 1952, The cytoarchitectonic organization of the spinal cord in the cat, J. Comp. Neurol., 96:415CrossRefGoogle Scholar
  29. Taylor, D. C. M., and Pierau, F.-K., 1982, Double fluorescence labelling supports electrophysiological evidence for dichotomizing peripheral sensory nerve fibres in rats, Neurosci. Lett., 33:1PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • S. Mense
    • 1
  1. 1.Institut für Anatomie und ZellbiologieUniversität HeidelbergHeidelbergGermany

Personalised recommendations