Electronic Properties and Spin-Correlations of CuO2-Planes in High Temperature Superconductors

  • P. Horsch
  • W. H. Stephan
Part of the NATO ASI Series book series (NSSB, volume 213)


Considerable insight into the electronic structure and the nature of the charge carriers in high-T c superconductors (HTSC’s) comes from various types of photoemission and inverse photoemission experiments 1 . Such experiments showed that the states close to the Fermi level in the metallic samples have strong oxygen character 2 , i.e. additional holes go essentially on oxygen. By angle resolved photoemission in superconducting Bi 2 CaSr 2 Cu 2 O 8 even a band crossing the Fermi level could be resolved 3 . A Fermi edge has been seen by several groups, which suggests that there is a Fermi liquid which becomes superconducting. A further success of this class of spectroscopies was the observation of the superconducting gap by high-resolution UV-photoemission 4 . The discussion about the precise character of the carriers, however, is still on a qualitative level and controversial. Recent investigations of the O 1s absorption edge 5,6 showed that the relevant oxygen orbitals have 95% p x,y -symmetry, with x and y in the plane 6 .


Hubbard Model Charge Density Wave Lanczos Algorithm Fermi Edge Additional Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. C. Fuggle, J. Fink, and N. Nücker, Int. J. Mod. Phys. B1:1185 (1988) and references therein.ADSGoogle Scholar
  2. 2.
    H. Rietschel et al., Physica C153–155: 1067 (1988).Google Scholar
  3. 3.
    T. Takahashi et al., Nature 334: 691 (1988).CrossRefADSGoogle Scholar
  4. 4.
    J. M. Imer et al., (preprint).Google Scholar
  5. 5.
    N. Nücker et al., (preprint).Google Scholar
  6. 6.
    F. J. Himpsel et al., Phys. Rev. B38: 11946 (1988).ADSGoogle Scholar
  7. 7.
    J. Zaanen, O. Jepsen, O. Gunnarsson, A.T. Paxton, and O. K. Andersen, Physica C153–155: 1636 (1988).Google Scholar
  8. 8.
    J. Zaanen, G.A. Sawatzky, and J.W. Allen, Phys.Rev.Lett. 55: 418 (1985).CrossRefADSGoogle Scholar
  9. 9.
    P. Fulde, Physica C153–155: 1769 (1988).Google Scholar
  10. 10.
    P. W. Anderson, Science 235: 1196 (1987).CrossRefADSGoogle Scholar
  11. 11.
    A. Muramatsu, (this volume).Google Scholar
  12. 12.
    F. C. Zhang and T. M. Rice, Phys.Rev. B37: 3759 (1988).ADSGoogle Scholar
  13. 13.
    J. E. Hirsch, E. Loh, D, J. Scalapino, and S. Tang, Physica C153–155: 549 (1988).Google Scholar
  14. 14.
    M. Ogata and H. Shiba, J.Phys.Soc.Jpn. 57: 3074 (1988).CrossRefADSGoogle Scholar
  15. 15.
    C. M. Varma, S. Schmitt-Rink, and E. Abrahams, Physica C153: 1622 (1988).Google Scholar
  16. 16.
    D. Baeriswyl and A. R. Bishop, Phys. Scr. T19: 239 (1987).CrossRefADSGoogle Scholar
  17. 17.
    J. E. Hirsch, S. Tang, E. Loh, and D. J. Scalapino, Phys.Rev.Lett. 60: 1668 (1988).CrossRefADSGoogle Scholar
  18. 18.
    C. A. Balseiro et al., Phys. Rev. B38: 9315 (1988).ADSGoogle Scholar
  19. 19.
    W. H. Stephan, W. v. d. Linden, and P. Horsch, Int. J. Mod. Phys. B1: 1005 (1988), and Phys. Rev. B39,Feb. (1989).Google Scholar
  20. 20.
    M. S. Hybertsen and L. F. Mattheiss, Phys. Rev. Lett. 60: 1661 (1988).CrossRefADSGoogle Scholar
  21. 21.
    V. J. Emery, Phys. Rev. Lett. 58: 2794 (1987).CrossRefADSGoogle Scholar
  22. 22.
    V. J. Emery and G. Reiter, Phys. Rev. B38: 4547 (1988).ADSGoogle Scholar
  23. 23.
    G. D. Mahan, Many-Particle Physics, ( Plenum, New York, 1981 ).Google Scholar
  24. 24.
    J. Zaanen, C. Westra, and G. A. Sawatzky, Phys.Rev. B33: 8060 (1986).ADSGoogle Scholar
  25. 25.
    R. Jullien and R. M. Martin, Phys. Rev. B26: 6173 (1982).ADSGoogle Scholar
  26. 26.
    A. M. Oles, G. Treglia, D. Spanjard, and R. Jullien, Phys. Rev. B32: 2167 (1985).ADSGoogle Scholar
  27. 27.
    B. N. Parlett, The symmetric Eigenva,lue Problem, (Prentice Hall, Englewood Cliffs,1980).Google Scholar
  28. 28.
    R. Haydock, V. Heine, and M. J. Kelly in Solid State Physics, Vo1.35, edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York, 1980).Google Scholar
  29. 29.
    J. Fink, N. Nucker, H. Romberg, and J. C. Fuggle, IBM Journal of Research and Development (in print).Google Scholar
  30. 30.
    M. Schluter, M. S. Hybertsen, and N. E. Christensen, Physica C153-155: 1217 (1988); M. S. Hybertsen et al. (preprint) and references therein.Google Scholar
  31. 31.
    M. Imada, N. Nagaosa, and Y. Hatsugai, J.Phys.Soc.Jpn. 57:2901 (1988); M. Imada, Proceedings of the 2nd NEC Symposium on Mechanisms of HTSC’y. (Springer).Google Scholar
  32. 32.
    A. Aharony, R. J. Birgeneau, and M. A. Kastner, Int.J.Mod.Phys. B1:649 (1988).Google Scholar
  33. 33.
    Z. Tesanovic, A. R. Bishop, R. L. Martin, and K. A. Muller, (submitted to Nature).Google Scholar
  34. 34.
    W. Weber, A. L. Shelankov, and X. Zotos, Proceedings of the 2nd NEC Symposium on Mechanisms of HTSC’y. (Springer,Heidelberg, in print).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • P. Horsch
    • 1
  • W. H. Stephan
    • 1
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgart 1Federal Republic of Germany

Personalised recommendations