Dimensionality Effects in trans-(CH)x

  • P. Vogl
  • D. K. Campbell
Part of the NATO ASI Series book series (NSSB, volume 213)

Abstract

In a conference proceedings devoted to “interacting electrons in reduced dimensions” it might at first seem inappropriate to discuss a calculation of the full three-dimensional (3-D) structure of trans-polyacetylene [trans-(CH) x ]. This impression is only strengthened by the very extensive literature on one-dimensional (1-D) models of trans-(CH) x , much of it focusing on the seemingly more relevant—at least in the present context—issue of the relative importance of electron-electron (e-e) versus electron-phonon (e-p) interactions [for reviews, see1–6]. Nonetheless, as we hope will become apparent, the (often fairly small) interchain couplings that are present in the real solid state materials can alter profoundly expectations based on strictly 1-D models. For trans-(CH) x this is particularly the case. Thus, if nothing else, our contribution serves as a reminder that the issue of dimensionality can in fact be absolutely crucial in determining the properties of even highly anisotropic, “low”-dimensional materials, independent of which interactions appear to be dominant. To begin our discussion, we start from an analysis of the ground state of crystalline trans-(CH) x .

Keywords

Anisotropy Soliton Fibril Lene Maki 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For the most recent in the series of conference proceedings reviewing all aspects of this and related issues, see Syn. Met. 27 (1988), 28 (1989), and 29 (1989).Google Scholar
  2. 2.
    A.J. Heeger, S. Kivelson, J. R. Schrieffer, and W-P. Su, Rev. Mod. Phys. 60, 781 (1988).CrossRefADSGoogle Scholar
  3. 3.
    D. Baeriswyl, D.K.Campbell, and S. Mazumdar, in Theory of Pi- Conjgated Polymers, edited by H. Kiess (Springer, Heidelberg, 1989), in press.Google Scholar
  4. 4.
    Lu Yu, Solitons and Polarons in Conducting Polymers, ( World Scientific, Singapore, 1988 ).Google Scholar
  5. 5.
    A. A. Ovchinnikov and I. I. Ukrainskii, Sov. Sci. Rev. B. Chem. 9, 125 (1987).Google Scholar
  6. 6.
    S. A. Brazovskii and N. N. Kirova, Sov. Sci. Rev. A, Phys. 5, 100 (1984).Google Scholar
  7. 7.
    Theory of the Inhomogeneous Electron Gas, ed. by S. Lundquist and N.H. March (Plenum, New York, 1983), and references therein.Google Scholar
  8. 8.
    D.R. Hamann, M. Schlüter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979).CrossRefADSGoogle Scholar
  9. 9.
    J. Ihm, A. Zunger, M.L. Cohen, J. Phys. C 12, 4409 (1979).CrossRefADSGoogle Scholar
  10. 10.
    O. Gunnarson and R.O. Jones, Physica Scripta 21, 394 (1980).CrossRefADSGoogle Scholar
  11. 11.
    The LDA or LSD A does not become exact in the limiting case of an hydrogen atom; the error in the wave function is very small however, as shown by O. Gunnarson, B.I. Lundquist, and J.W.Wilkins, Phys. Rev. B 10, 1319 (1974).Google Scholar
  12. 12.
    B. Delley, P.Becker, B.Gillon, J. Chem. Phys.80, 4286 (1984); B. Delley, A.J. Freeman, and D.E. Ellis, Phys. Rev. Lett. 50, 488 (1983).CrossRefADSGoogle Scholar
  13. 13.
    J. Callaway and N. H. March, Solid State Physics 38, 136 (1984).CrossRefGoogle Scholar
  14. 14.
    A discussion of recent work on structural properties with this method is given by, e.g., S. Fahy, S.G. Louie, Phys. Rev. B 36, 3373 (1987) and references therein.ADSGoogle Scholar
  15. 15.
    S. B. Trickey, F. R. Green, Jr., and F. W. Averill, Phys. Rev. B 8 4822 (1973).CrossRefADSGoogle Scholar
  16. 16.
    G.S. Painter, Phys. Rev. B 24, 4264 (1981).CrossRefADSGoogle Scholar
  17. 17.
    W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    O. Gunnarson and B.I. Lundquist, Phys. Rev. B 13, 4274 (1976).CrossRefADSGoogle Scholar
  19. 19.
    P. Vogl, D.K. Campbell, and O. Sankey, Syn. Met. 28, D513 (1989).CrossRefGoogle Scholar
  20. 20.
    P. Vogl and D. K. Campbell, Phys. Rev. Lett. 62, 2012 (1989).CrossRefADSGoogle Scholar
  21. 21.
    P. Vogl and D. K. Campbell, “First-Principles Calculations of the Three-Dimensional Structure and Intrinsic Defects in trans- Polyacetylene”, Phys. Rev. B, to appear.Google Scholar
  22. 22.
    J. P. Pouget, in Electronic Properties of Polymers and Related Compounds, edited by H. Kuzmany, M. Mehring, and S. Roth, ( Springer, Heidelberg, 1986), Springer Series in Solid State Sciences, Vol. 63, p. 26.Google Scholar
  23. 23.
    H. Kahlert, O. Leitner, and G. Leising, Syn. Met. 17, 467 (1987).CrossRefGoogle Scholar
  24. 24.
    C. R. Fincher, C.-E. Chen, A.J. Heeger, A. G. MacDiarmid, and J.B. Hastings, Phys. Rev. Lett. 48, 100 (1982).CrossRefADSGoogle Scholar
  25. 25.
    R.H. Baughman and G. Moss, J. Chem. Phys. 27, 6321 (1982).CrossRefADSGoogle Scholar
  26. 26.
    W.-P. Su, J.R. Schrieffer, and A.J.Heeger, Phys. Rev. Lett. 42, 1698 (1979); Phys. Rev. B 22, 2099 (1980); Phys. Rev. B 29, 2309 (1984).CrossRefADSGoogle Scholar
  27. 27.
    B. Horovitz, Phys. Rev B 12, 3174 (1975); D. Baeriswyl and K.Maki, Phys. Rev. B 28, 2068 (1983) and Syn. Met. 28 D507 (1989).CrossRefADSGoogle Scholar
  28. G. Leising, R. Uitz, B. Ankele, W. Ottinger, and F. Stelzer, Mol. Cryst. Liqu. Cryst. 117, 327 (85); W. Ottinger, G. Leising, H. Kahlert, p. 63 in Electronic Properties of Polymers and Related Compounds, edited by H. Kuzmany, M. Mehring, and S. Roth, (Springer, Heidelberg, 1986), Springer Series in Solid State Sciences, Vol. 63.Google Scholar
  29. 29.
    D. Moses, A. Feldblum, E. Ehrenfreund, A. J. Heeger, T.C. Chung, and A. G. MacDiarmid, Phys. Rev. B 26, 3361 (1982).CrossRefADSGoogle Scholar
  30. 30.
    D. Emin, in Handbook of Conducting Polymers, edited by T.A. Skotheim (Dekker, New York, 1986), Vol. 2, p. 915 and references cited therein.Google Scholar
  31. 31.
    D. Emin, Phys. Rev. B 33, 3973 (1986).CrossRefADSGoogle Scholar
  32. 32.
    W.A. Harrison, Electronic structure and the Properties of Solids, ( Freeman, San Francisco, 1980 ).Google Scholar
  33. 33.
    J.A. Majewski and P. Vogl, Phys. Rev. B 35, 9666 (1987).CrossRefADSGoogle Scholar
  34. 34.
    Yu. N. Gartstein and A. A. Zakhidov, Sol. State Comm. 62, 213 (1987); (erratum) ibid. 65, ii (1987).CrossRefADSGoogle Scholar
  35. 35.
    K. Maki, Syn. Met. 9, 185 (1984).CrossRefGoogle Scholar
  36. 36.
    J. C. Hicks and Y. R. Lin-Liu, Phys. Rev. B 30, 6184 (1984).CrossRefADSGoogle Scholar
  37. 37.
    G. F. Köster and J. C. Slater, Phys. Rev 95, 1167 (1954); 96, 1208 (1954).CrossRefADSGoogle Scholar
  38. 38.
    D.K. Campbell and A.R. Bishop, Phys. Rev. B 24, 4859 (1981).CrossRefADSGoogle Scholar
  39. 39.
    R. Chance, D.S. Boudreaux, J.L. Bredas, and R. Silbey, in Handbook of Conducting Polymers, edited by T.A. Skotheim ( Dekker, New York, 1986 ), Vol. 2, p. 825.Google Scholar
  40. 40.
    W.P. Su, in Handbook of Conducting Polymers, edited by T.A. Skotheim ( Dekker, New York, 1986 ), Vol. 2, p. 757.Google Scholar
  41. 41.
    S. Phillpot, D. Baeriswyl, A.R. Bishop, P. Lomdahl, Phys. Rev. B 35, 7533 (1987).CrossRefADSGoogle Scholar
  42. 42.
    A.R. Bishop, D.K. Campbell, P.S. Lomdahl, B. Horovitz, and S.R. Phillpot, Phys. Rev. Lett. 52, 671 (1984).CrossRefADSGoogle Scholar
  43. 43.
    R. Ball, W. P. Su, and J. R. Schrieffer, Jour. de Phys. Coll. 44, C3–429 (1982).Google Scholar
  44. 44.
    H.J.Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).CrossRefADSMathSciNetGoogle Scholar
  45. 45.
    B. Ankele, G. Leising, and H. Kahlert, Solid State Comm. 62, 245 (1987).CrossRefADSGoogle Scholar
  46. 46.
    T. Ito, H. Shirakawa, S. Ikeda, J. Polymer Sci. Polymer Ed. 12, 11 (1974).CrossRefADSGoogle Scholar
  47. 47.
    G. Leising, H. Kahlert, and O. Leitner, in Handbook of Conducting Polymers, edited by T.A. Skotheim, ( Dekker, New York, 1986 ), Vol. 1, p. 56.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • P. Vogl
    • 1
    • 2
  • D. K. Campbell
    • 1
  1. 1.Theoretical Division and Center for Nonlinear StudiesLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Institut für Theoretische PhysikUniversität GrazGrazAustria

Personalised recommendations