Oxygen Ordering in YBa2Cu3O6+δ: A Phase Diagram Calculation

  • J. M. Sanchez
  • J. L. Morán-López


The phase diagram of the ordered phases in YBa2Cu3O6+δ as a function of oxygen concentration δ is calculated. The model takes as units the octahedra clusters formed by the O(1), O(4) and O(5) sites coordinated to the Cu(1) sites. A ground state analysis is carried out for δ in the range 0 to 1 assuming that the only structural units present are octahedra occupied by 0, 1 and 2 oxygen atoms in the basal plane, in addition to a repulsive Coulomb interaction between O atoms not mediated by Cu(1) atoms. The model accounts for several of the experimentally observed ordered structures. At finite temperatures, the model Hamiltonian is solved within the octahedron approximation of the cluster variation method. The effect of the O(4) vacancies on the equilibrium phase diagram is analysed.


Basal Plane Equilibrium Phase Diagram Calculated Phase Diagram Oxygen Stoichiometry Cluster Variation Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.D. Jorgensen, M.A. Beno, D.G. Rinks, L. Soderholm, K.J. Volin, R.L. Hitterman, J.D. Grace, I.K. Schuller, C.U. Segre, K. Zhang, and M.S. Kleefisch, Phys. Rev. B 36, 3608 (1987).CrossRefGoogle Scholar
  2. 2.
    C. Chaillout, M.A. Alario-Franco, J.J. Capponi, J. Chenevas, and M. Marezio, Solid State Commun., 65, 283 (1988).CrossRefGoogle Scholar
  3. 3.
    R.M. Fleming, L.F. Schneemeyer, P.K. Gallagher, B. Batlogg, L.P. Rupp, and J.V. Waszczak, Phys. Rev. B 37, 7920 (1988).CrossRefGoogle Scholar
  4. 4.
    M.A. Alario-Franco, J.J. Capponi, C. Chaillout, J. Chenevas, and M. MarezioProc. Materials Research Society Meeting, Boston 1987.Google Scholar
  5. 5.
    G. van Tanderloo, H.W. Zandbergen, and S. Amelinckx, Solid State Commun., 63, 289 (1987).CrossRefGoogle Scholar
  6. 6.
    C.H. Chen, D.J. Werder, L.F. Scheeemeyer, P.K. Gallagher, and J.V. Waszczak, Phys. Rev. B 38, 2888 (1988).CrossRefGoogle Scholar
  7. 7.
    D.J. Werder, C.H. Chen, R.J. Cava, and B. Batlogg, Phys. Rev. B 38, 5130 (1988).CrossRefGoogle Scholar
  8. 8.
    A.G. Khachaturyan and J.W. Morris, Jr., Phys. Rev. Lett., 61, 215 (1988).CrossRefGoogle Scholar
  9. 9.
    L.T. Wille, A. Berera, and D. de Fontaine, Phys. Rev. Lett., 60, 1065 (1988).CrossRefGoogle Scholar
  10. 10.
    R. Kikuchi, Phys. Rev., 81, 988 (1951).CrossRefGoogle Scholar
  11. 11.
    J.D. Jorgensen, H. Shaked, D.G. Hinks, B. Dabrowski, B.WL Veal, A.P. Paulikas, L.J. Nowicki, G.W. Crabtree, W.K. Kwok, L.H. Nunez and H. Claus, Proceedings of the International Conference on High Temperature Superconductors: Materials and Mechanisms of Superconductivity, Interlaken, Switzerland, February 1988.Google Scholar
  12. 12.
    J.M. Sanchez, F. Mejía-Lira, and J.L. Moran-López, Phys. Rev. B 37, 3678 (1988).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • J. M. Sanchez
    • 1
  • J. L. Morán-López
    • 2
  1. 1.Henry Krumb School of MinesColumbia UniversityNew YorkUSA
  2. 2.Institute of PhysicsUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico

Personalised recommendations