Spin and Hole Dynamics in Doped Anisotropic Heisenberg Antiferromagnets

  • Miguel Lagos


Though the nature and physical origin of the antiferromagnetism observed in the layered perovskites remain unsettled questions, it is widely accepted that most of the action occurs in the Cu-O layers characteristic of all the compounds having a superconducting phase. The observation of long ranged two dimensional antiferromagnetic correlations far beyond the Néel temperature T N support this view.1 This way, the Cu-O layers are of special interest because likely provide a good realization of a low-dimensional spin-1/2 Heisenberg antiferromagnet. Although the ability of the two dimensional Heisenberg model to fully explain the magnetic properties of the layered metal oxides has not been established,2,3 its study has became one of the most active fields of research in solid state physics.2–7


Ground State Energy Anisotropy Parameter Superconducting Phase Heisenberg Model Antiferromagnetic Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Shirane, Y. Endoh, R. J. Birgeneau, M. A. Kastner, Y. Hidaka, M. Hoda, M. Suzuki, and T. Murakami, Phys. Rev. Lett. 59, 1613 (1987).CrossRefGoogle Scholar
  2. 2.
    S. Chakraverty, B. I. Halperin, and D. R. Nelson, Phys. Rev. Lett. 60, 1057 (1988).Google Scholar
  3. 3.
    D. R. Grempel, Phys. Rev. Lett. 61, 1041 (1988).CrossRefGoogle Scholar
  4. 4.
    S. Liang, B. Doucot, and P. W. Anderson, Phys. Rev. Lett. 61, 365 (1988), and references therein.CrossRefGoogle Scholar
  5. 5.
    A. Auerbach and D. P. Arovas, Phys. Rev. Lett. 61, 617 (1988).CrossRefGoogle Scholar
  6. 6.
    Y. Okabe, M. Kikuchi, and A. D. S. Nagi, Phys. Rev. Lett. 61, 2971 (1988).CrossRefGoogle Scholar
  7. 7.
    D. C. Mattis and C. Y. Pan, Phys. Rev. Lett. 61, 463 (1988).CrossRefGoogle Scholar
  8. 8.
    J. B. Torrance Y. Tokura, A. I. Nazzal, A. Bezinge, T. C. Huang, and S. S. P. Parkin, Phys. Rev. Lett. 61, 1127 (1988).CrossRefGoogle Scholar
  9. 9.
    J. R. Schrieffer, X. -G. Wen, and S. -C. Zhang, Phys. Rev. Lett. 60, 944 (1988);CrossRefGoogle Scholar
  10. B. I. Shraiman and E. D. Siggia, Phys. Rev. Lett. 61, 467 (1988).CrossRefGoogle Scholar
  11. 10.
    M. Lagos and G. G. Cabrera, Phys. Rev. B 38, 659 (1988).CrossRefGoogle Scholar
  12. 11.
    G. G. Cabrera, M. Lagos, and M. Kiwi, Solid State Commun. 68, 743 (1988).CrossRefGoogle Scholar
  13. 12.
    M. Lagos, M. Kiwi, E. R. Gagliano, and G. G. Cabrera, Solid State Commua 67, 225 (1988).CrossRefGoogle Scholar
  14. 13.
    M. Lagos M. Kiwi, E. R. Gagliano, and G. G. Cabrera, Solid State Commun. 70, 431 (1989).CrossRefGoogle Scholar
  15. 14.
    D. Gottlieb and M. Lagos, Phys. Rev. B 39, 2960 (1989).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Miguel Lagos
    • 1
  1. 1.Departamento de Física Facultad de CienciasUniversidad de ChileSantiagoChile

Personalised recommendations