Advertisement

Interfacial Electron Transfer Reactions of Heme Proteins

  • Yuan Xiaoling
  • John K. Cullison
  • Songcheng Sun
  • Fred M. Hawkridge

Abstract

The kinetics and thermodynamics of electron transfer reactions of heme proteins can be studied directly at metal and semiconductor electrodes. We have been interested in characterizing the heterogeneous electron transfer properties of biological electron transfer proteins since the initial report of electrocatalysis in the reaction of spinach ferredoxin at a polymer modified gold electrode (Landrum et al., 1977). This 11,000 dalton iron-sulfur protein, which participates in green plant photosynthesis, was shown to undergo direct, heterogeneous, electron transfer at quasi- reverisble rates at this modified electrode. Later that year two communications described quasi-reversible electron transfer rates by cytochrome c at modified gold (Eddowes and Hill, 1977) and at bare indium oxide (Yeh and Kuwana, 1977) electrodes.

Keywords

Formal Potential Electron Transfer Reaction Break Temperature Indium Oxide Heme Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albertson, D. E., Blount, H. N., and Hawkridge, F. M., 1979, Spectroelectrochemical Determination of Heterogeneous Electron Transfer Rate Constants, Anal. Chem., 51: 556.CrossRefGoogle Scholar
  2. Armstrong, N.R., Lin, A.W.C., Fujihira, M. and Kuwana, T., 1976, Electrochemical and Surface Characteristics of Tin Oxide and Indium Oxide Electrodes, Anal. Chem., 48: 741.CrossRefGoogle Scholar
  3. Bancroft, E. E., Blount, H. N., and Hawkridge, F. M., 1981a, Single Potential Step Chronoabsorptometric Determination of Heterogeneous Electron Transfer identic Parameters of Quasi-Reversible Processes, Anal. Chem., 53: 1862.CrossRefGoogle Scholar
  4. Bancroft, E. E., Sidwell, J. S., and Blount, H. N., 1981b, Derivative Linear Sweep and Derivative Cyclic Voltab-sorptometry, Anal. Chem., 53: 1390.CrossRefGoogle Scholar
  5. Blodgett, K. B., 1935, Films Built by Depositing Successive Monoraolecular Layers on a Solid Surface, J. Am. Chem. Soc., 57: 1007.CrossRefGoogle Scholar
  6. Bowden, E. F., Hawkridge, F. M., and Blount, H. N., 1980, Heterogeneous Electron Transfer Kinetics of Sperm Whale Myoglobin, Bioelectrochem. Bioenerg., 7: 447.CrossRefGoogle Scholar
  7. Bowden, E. F., Hawkridge, F. M., and Blount, H. N., 1982a, The Heterogeneous Electron Transfer Properties of Cytochrome c, Adv. Chem. Ser., 201: 159.CrossRefGoogle Scholar
  8. Bowden, E. F., Hawkridge, F. M., Chlebowski, J. F., Bancroft, E. E., Thorpe, C., and Blount H. N., 1982, Cyclic Voltammetry and Derivative Cyclic Voltabsorptometry of Purified Horse Heart Cytochrome c at Tin-Dopped Indium Oxide Optically Transparent Electrodes, J. Am. Chem. Soc., 104: 7641.CrossRefGoogle Scholar
  9. Brautigan, D.L., Ferguson-Miller, S. and Margoliash, E., 1978, Mitochondrial Cytochrome c preparation and Activity of Native and Chemically Modified Cytochromes c, Methods Enzymol., 53D: 131.Google Scholar
  10. Davis, L.A., Schejter, A., Hess, G.P., 1974, Alkaline Isomerization of Oxidized Cytochrome c - Equilbrium and Kinetic Measurements, J.Biol.Chem., 249: 2624.Google Scholar
  11. Eddowes, M. J. and Hill, H. A. O., 1977, Novel Method for the Investigation of the Electrochemistry of Metalloproteins: Cytochrome c, J. C. S. Chem. Commun. 7 771.CrossRefGoogle Scholar
  12. Eley, C.G.S. and Moore, G.R., 1983, H - 1 NMR Investigation of the Interaction Between Cytochrome c and Cytochrome B5, Biochem. J., 215: 11.Google Scholar
  13. Koller, K. B. and Hawkridge, F. M., 1985, Temperature and Electrolyte Effects on the Electron-Transfer Reactions of Cytochrome c, J. Am. Chem. Soc., 107: 7412CrossRefGoogle Scholar
  14. Langmuir, I., 1939, Molecular Layers, Proc. Roy. Soc. London Ser., 170: 1.CrossRefGoogle Scholar
  15. Landrum, H. L., Salmon, R. T., and Hawkridge, F. M., 1977, A Surface-Modified Gold Minigrid Electrode Which Heterogeneously Reduces Spinach Ferredoxin, J. Am. Chem. Soc., 99: 3154.CrossRefGoogle Scholar
  16. Lenaz, G., ed., 1985, “Coenzyme Q: Biochemistry, Bioenergetics and Clinical Applications of Ubiquinone,” John Wiley and Sons, New York.Google Scholar
  17. Moore, G.R., Williams, R.J.P., 1980, Stability of Ferri - cytochrome c - temperature Dependence if Its NMR - Spectrum. Eur.J.Biochem. 103: 523.CrossRefGoogle Scholar
  18. Moore, G.R., Huang, Z.-X., Eley, C.G.S., Barker, H.A., Williams,G., Robinson, M.N., Williams, R.J.P., 1982, Electron transfer in biology; The function of cytochrome c. Faraday Disc. Faraday Discuss. Chem. Soc., 74: 311Google Scholar
  19. Myer, Y.P., 1968, Conformation of Cytochromes. III. Effect of Urea, Temperature, Extrinsic Ligands, and pH Variation on the Conformation of Horse Heart Ferricytochrome c. Biochemistry 7: 765.CrossRefGoogle Scholar
  20. Netzer, L., and Sagiv, J., 1983, A New Approach to Construction of Artificial Monolayer Assemblies, J. Am. Chem. Soc., 105: 674.CrossRefGoogle Scholar
  21. Nuzzo, R. G., and Allara, D. L., 1983, Adsorption of Bifunctional Organic Disulfides on Gold Surfaces, J. Am. Chem. Soc., 05: 4481.CrossRefGoogle Scholar
  22. Osheroff, N., Borden, D., Koppenol, W.H. and Margoliash, E., 1980a, Electrostatic Interations in Cytochrome c. J. Biol. Chem., 255: 1689.Google Scholar
  23. Osheroff, N., Brautigan, D.L. and Margoliash, E., 1980b, Mapping of Anion Binding Sites on Cytochrome c by Dif ferential Modification of Lysine Residues, Proc. Natl. Acad. Sci. U.S.A., 77: 4439CrossRefGoogle Scholar
  24. Osheroff, N., Brautigan, D.L, and Margoliash, E., 1980c, Definition of Enzymatic Interation Domains on Cytochrome c - Purification and Activity of Singly Substituted, J. Biol. Chem., 255: 8245.Google Scholar
  25. Pettigrew, G.W., Ariram, I. and Schejter, A., 1976, Role of Lisines in Alkaline Heme - linked Ioniaztion of Ferric Cytochrome c, Biochem. Biophys. Res. Commun., 68: 807.CrossRefGoogle Scholar
  26. Porter, M. D., Bright, T. B., Allara, D. L., and Chidsey, C. E. D., 1987, Spontaneously Organized Molecular Assemblies: Structural Characterization of n-Alkyl Thiol Monolayers on Gold by Optical Ellipsometry, InfraredGoogle Scholar
  27. Spectroscopy, and Electrochemistry, J. Am. Chem. Soc., 109:3559.Google Scholar
  28. Reed, D. E. and Hawkridge, F. M., 1988, Direct Electron Transfer Reactions of Cytochrome c at Silver Electrodes, Anal. Chem., 59: 2334.CrossRefGoogle Scholar
  29. Rich, P. R., 1982, Electron and Proton Transfers in Chemical and Biological Quinone Systems, Faraday Discuss. Chem. Soc., 74: 349.CrossRefGoogle Scholar
  30. Robinson, M.N., Boswell, A.P., Huang, Z.-X., Eley, C.G.S. and Moore, G.R., 1983, The conformation of eukaryotic cytochrome c around residues 39,57,59 and 74, Biochem. J., 213: 687.Google Scholar
  31. Savitzky, A. and Golay, M.J.E., 1964, Smoothing and Differentiation of Data by Simplified Least Squares Procedures, Anal.Chem., 36: 1627.CrossRefGoogle Scholar
  32. Schejter, A. and George, P., 1964, 695 - nm Band of Ferricytochrome c and Tis Relationship to Protein Conformation, Biochemistry, 3: 1045.Google Scholar
  33. Sun, S., Reed, D. E., Cullison, J. K., Rickard, L. H., and Hawkridge, F. M., 1988, Electron Transfer Reactions of Cytochrome c at Metal Electrodes, Mikrochim. Acta, III: 97.Google Scholar
  34. Taniguchi, I., Iseki, M., Eto, T., Toyosawa, K., Yamaguchi, H. and Yasukouchi, K., 1984, The Effect of pH on the Temperature Dependence of the Redox Potential of Horse Heart Cytochrome c at a Bis(4-pyridyl)disultide-modified Gold Electrode, Bioelectrochem. Bioenerg., 13: 373.CrossRefGoogle Scholar
  35. Theorell, H. and Akesson, A., 1941, Studies on Cytochrome c. I. Electrophoretic Purification of Cytochrome c and its Amino Acid Composition, J. Am. Chem. Soc., 63: 1804.CrossRefGoogle Scholar
  36. Vanbuuren, K.J.H., Van Gelder, B.F., Wilting, J. and Braams, R., 1974, Biochemical and Biophysical Studies on Cytochrome c Oxidase. 14. Reaction with Cytochrome c as Studied by Pluse - radiolysis, Biochim. Biophys. Acta, 333: 421.CrossRefGoogle Scholar
  37. Yeh, P. and Kuwana, T., 1977, Reversible Electrode Reaction of Cytochrome c, Chem. Lett., 1145.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Yuan Xiaoling
    • 1
  • John K. Cullison
    • 1
  • Songcheng Sun
    • 1
  • Fred M. Hawkridge
    • 1
  1. 1.Department of ChemistryVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations