The Study of Membrane Electrofusion and Electroporation Mechanisms

  • Arthur E. Sowers


Electrofusion, the induction of membrane fusion with an electric field pulse, was reported independently in four laboratories (Neumann et al., 1980; Senda et al., 1979; Teissie et al., 1982; Zimmermann et al., 1981). Although most papers which report on the use of electrofusion have genetic manipulation purposes, electrofusion has been shown to have special advantages for producing monoclonal antibody-secreting hybridomas (Karsten et al., 1988; Lo and Tsong, 1989; Glassy and Pratt, 1989). Also, as will be explained below, electrofusion is a promising new way to study membrane fusion mechanisms.


Electric Pulse Membrane Fusion Electric Field Pulse Fusion Event Erythrocyte Ghost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bates, G., Saunders, J., and Sowers, A. E., 1987, Electrofusion: principles and applications, in: “Cell Fusion,” A. E. Sowers, ed., Plenum Press, New York.Google Scholar
  2. Berg, H., 1987, Electrotransfection and electrofusion of cells and electrostimulation of their metabolism, Studia Biophys, 119: 17.Google Scholar
  3. Blangero, C., and Teissie, J., 1985, Ionic modulation of electrically- induced fusion of mammalian cells, J. Memb. Biol, 86: 247.CrossRefGoogle Scholar
  4. Bliss, J. G., Harrison, G. I., Mourant, J. R., Powell, K. T., and Weaver, J. C., 1988, Electroporation: the population distribution of macromolecular uptake and shape changes in red blood cells following a single 50 us square wave pulse, Bioelectrochem. Bioenerget, 20: 57.CrossRefGoogle Scholar
  5. Breckenridge, L. J., and Aimers, W., 1987, Final steps in exocytosis observed in a cell with giant secretory granules, Proc. Natl. Acad. Sci. USA, 84: 1945.CrossRefGoogle Scholar
  6. Chang, D. C., and Reese, T. S., 1989, Structure of electric field-induced membrane pores revealed by rapid-freezing electron microscopy, Biophys. J, 55: 136a.Google Scholar
  7. Chassy, B. M., Mercenier, A., and Flickinger, J., 1988, Transformation of bacteria by electroporation, TibTech, 6: 303.Google Scholar
  8. Chernomordik, L. V., Sukharev, S. I., Popov, V. F., Pastushenko, A. V., Abidor, I. G., and Chizmadzhev, Y. A., 1987, The electrical breakdown of cell and lipid membranes: the similarity of phenomenologies. Biochim. Biophys. Acta, 902: 360.CrossRefGoogle Scholar
  9. Dimitrov, D. S., and Jain, R. K., 1984, Membrane stability, Biochim. Biophys. Acta, 779: 437.Google Scholar
  10. Dodge, J. T., Mitchell, C., and Hanahan, D. J., 1963, The preparation and chemical characterization of hemoglobin-free ghosts of human erythrocytes, Arch. Biochem. Biophys, 100: 119.CrossRefGoogle Scholar
  11. Ehrenberg, B., Farkas, D. L., Fluhler, E. N., Lojewska, Z., and Loew, L. M., 1987, Membrane potential induced by external electric field pulses can be followed with a potentiometric dye, Biophys. J, 51: 833.CrossRefGoogle Scholar
  12. Farkas, D. L., Malkin, S., and Korestein, R., 1984, Electrophotolumi- nescence and the electrical properties of the photosynthetic membrane: II. Electric field-induced electrical breakdown of the photosynthetic membrane and its recovery, Biochim. Biophys. Acta, 767: 507.CrossRefGoogle Scholar
  13. Fernandez, J. M., Neher, E., and Gomperts, B. D., 1984, Capacitancemeasurements reveal stepwise fusion events in degranulating mast cells, Nature, 312: 453.CrossRefGoogle Scholar
  14. Fricke, H., 1953, The electric permittivity of a dilute suspension of membrane covered ellipsoids, J. Appl. Phys, 24: 644.CrossRefGoogle Scholar
  15. Gingell, D., and Ginsberg, L., 1978, Problems in the physical interpretation of membrane interaction and fusion, in: “Membrane Fusion,” G. Poste and G. L. Nicolson, eds., Elsevier/N. Holland, Amsterdam.Google Scholar
  16. Glassy, M. C., and Pratt, M., 1989, Generation of Human Hybridomas by Electrofusion, in: “Electroporation and Electrofusion in Cell Biology,” E. Neumann, A. E. Sowers, and C. A. Jordan, eds., Plenum Press, New York.Google Scholar
  17. Gross, D., Loew, L. M., and Webb, W., 1986, Optical imaging of cell membrane potential changes by applied electric fields, Biophys. J, 50: 339.CrossRefGoogle Scholar
  18. Hofmann, G. A., and Evans, G. A., 1986, Electronic genetic-physical and biological aspects of cellular electromanipulation, IEEE Eng. Med. Biol. Mag, 5: 6.CrossRefGoogle Scholar
  19. Iglesias, P. J., Santamaria, C., Lopez, M.C., and Domingues, A., 1989, Di- electrophoresis: Behavior of microorganisms and effect of electric fields on orientation phenomena, in: “Electroporation and Electro- fusion in Cell Biology,” E. Neumann, A. E. Sowers, and C. A. Jordan, eds., Plenum Press, New York.Google Scholar
  20. Inoue, S., 1986, “Video Microscopy,” Plenum Press, New York. Karsten, U., Stolley, P., Walther, I., Papsdorf, G., Weber, S., Conrad, K., Pasternak, L., and Kopp, J., 1988, Direct comparison of electric field-mediated and PEG-mediated cell fusion for the generation of antibody producing hybridomas, Hybridoma, 7: 627.Google Scholar
  21. Kikuchi, K., and Yoshioka, K., 1976, Electric field-induced conformational change of poly(L-lysine) studied by transient electric birefringence, Biopolymers, 15: 1669.CrossRefGoogle Scholar
  22. Kinosita, Jr., K., Ashikawa, I., Saita, N., Yoshimura, H., Itoh, H., Nagayama, K., and Ikegami, A., 1988, Electroporation of Cell membrane visualized under a pulsed-laser fluorescence microscope, Biophys. J, 53: 1015.CrossRefGoogle Scholar
  23. Knutton S., and Pasternak, C. A., 1979, The mechanism of cell-cell fusion, Trends Biochem. Sci, 4: 220.CrossRefGoogle Scholar
  24. Knight, D. E., and Scrutton, M. C., 1986, Gaining access to the cytosol: The technique and some applications of electropermeabiliziation, Biochem. J, 234: 497.Google Scholar
  25. Liang, H., Prurucker, W. J., Stenger, D. A., Kubiniec, R. T., and Hui, S.- W., 1988, Uptake of fluorescence-labeled dextrans by 10T 1/2 fibroblasts following permeation by rectangular and exponential decay electric field pulses, Biotechniques, 6: 550.Google Scholar
  26. Lo, M. M. S., and Tsong, T. Y., 1989, Producing monoclonal antibodies by electrofusion, in: “Electroporation and Electrofusion in Cell Biology,” E. Neumann, A. E. Sowers, and C. A. Jordan, eds., Plenum Press, New York.Google Scholar
  27. Lopez, A., Rols, M. P., and Teissie, J., 1988, 31-P NMR Analysis of membrane phospholipid organization in viable reversibly electropermeabilized Chinese hamster ovary cells, Biochemistry, 27: 1222.Google Scholar
  28. Margoliash, E., and Bosshard., H. R., 1983, Guided by electrostatics, a textbook protein comes of age, TIBS, 8: 316.Google Scholar
  29. McLaughlin, S., 1989, The electrostatic properties of membranes, Ann. Rev. Biophys. & Biophys. Chem, 18: 113.CrossRefGoogle Scholar
  30. McLaughlin, S., and Mathias, R. T., 1985, Electro-osmosis and the reabsorption of fluid in renal proximal tubules, J. Gen. Physiol, 85: 699.CrossRefGoogle Scholar
  31. Mehrle, W., Zimmermann, U., and Hampp, R., 1985, Evidence for asymmetrical uptake of fluorescent dyes through electropermeabilized membranes of Avena mesophyll protoplasts, FEBS Lett, 185: 89.CrossRefGoogle Scholar
  32. Mehrle, W., Hampp, R., and Zimmermann, U., 1989, Electric pulse induced membrane permeabilisation. Spatial orientation and kinetics of solute efflux in freely suspended and dielectrophoretically aligned plant mesophyll protoplasts, BBA, 978: 267.CrossRefGoogle Scholar
  33. Miller, J. F, Dower, W. J., and Tompkins, L. S., 1988, Proc. Natl. Acad. Sci. USA, 85: 856.CrossRefGoogle Scholar
  34. Montecucco, C., Pozzan, T., and Rink, T., 1979, Dicarbocyanine fluorescent probes of membrane potential block lymphocyte capping, deplete cellular ATP and inhibit respiration of isolated mitochondria, Biochim. Biophys. Acta, 552: 552.CrossRefGoogle Scholar
  35. Neumann, E., Gerisch, G., and Opatz, K., 1980, Cell fusion induced by high electric impulses applied to Dictyostelium, Naturwissenschaften, 67: 414.CrossRefGoogle Scholar
  36. Neumann, E., Sowers, A.E., and Jordan, C. A., 1989, “Electroporation and Electrofusion in Cell Biology,” Plenum Press, New York.Google Scholar
  37. Neumann, E., Schaefer-Ridder, M., Wang, Y., and HofSchneider, P. H., 1982, Gene transfer into mouse lyoma cells by electroporation in high electric fields, EMBO J, 1: 841.Google Scholar
  38. Pilwat, G., Richter, H.-P., and Zimmermann, U., 1981, Giant culture cells by electric field-induced fusion, FEBS Lett, 133: 169.CrossRefGoogle Scholar
  39. Pohl, H. A., 1978, “Dielectrophoresis,” Cambridge University Press, London.Google Scholar
  40. Pohl, H. A., Pollock, K., and Rivera, H., 1984, The electrofusion of cells, Int. J. Quant. Chem: Quant. Biol. Symp, 11: 327.CrossRefGoogle Scholar
  41. Potter, H., 1988, Electroporation in biology: methods, application, and instrumentation, Analyt. Biochem, 174: 361.CrossRefGoogle Scholar
  42. Rols, M.-P., and Teissie, J., 1989, Ionic-strength modulation of elec-trically induced permeabilization and associated fusion of mammalian cells, Eur. J. Biochem, 179: 109.CrossRefGoogle Scholar
  43. Rossignol, D. P., Decker, G. L., Lennarz, W. J., Tsong, T. Y., and Teissie, J., 1983, Induction of calcium-dependent, localized cortical granule breakdown in sea-urchin eggs by voltage pulsation, Biochim. Biophys. Acta, 763: 346.CrossRefGoogle Scholar
  44. Schwister, K., and Deuticke, B., 1985, Formation and properties of aqueous leaks induced in human erythrocytes by electrical breakdown, Biochim. Biophys. Acta, 816: 332.CrossRefGoogle Scholar
  45. Senda, M., Takeda, J., Abe, S., and Nakamura, T., 1979, Induction of cell fusion of plant protoplasts by electrical stimulation, Plant & Cell Physiol, 20: 1441.Google Scholar
  46. Serpersu, E. H., Kinosita, Jr., K., and Tsong, T. Y., 1985, Reversible and irreversible modification of erythrocyte membrane permeability by electric field, Biochim. Biophys. Acta, 812: 779.CrossRefGoogle Scholar
  47. Shikegawa, K., and Dower, W. J., 1988, Electroporation of eukaryotes and prokaryotes: A general approach to the introduction of macromole- cules into cells, Biotechniques, 6: 742.Google Scholar
  48. Smith, T. C., Herlihy, J. T., and Robinson, S.,C., 1981, The effect of the fluorescent probe, 3,3′-dipropylthiadicarbocyanine iodide, on the energy metabolism of ehrlich ascites tumor cells, J. Biol. Chem, 256: 1108.Google Scholar
  49. Sowers, A. E., 1989, The mechanism of electrically-induced fusion in erythrocyte membranes, in: “Electroporation and Electrofusion in Cell Biology,” E. Neumann, A. E. Sowers, and C. A. Jordan, eds., Plenum Press, New York.Google Scholar
  50. Sowers, A. E., 1988, Fusion events and nonfusion contents mixing events induced in erythrocyte ghosts by an electric pulse, Biophys. J, 54: 619.CrossRefGoogle Scholar
  51. Sowers, A. E., 198-7, The long-lived fusogenic state induced in erythrocyte ghosts by electric pulses is not laterally mobile, Biophys. J, 52: 1015.Google Scholar
  52. Sowers, A. E., 1986, A long-lived fusogenic state is induced in erythrocyte ghosts by electric pulses, J. Cell Biol, 102: 1358.CrossRefGoogle Scholar
  53. Sowers, A. E., 1985, Movement of a fluorescent lipid label from a labeled erythrocyte membrane to an unlabeled erythrocyte membrane following electric field-induced fusion, Biophys. J, 47: 519.CrossRefGoogle Scholar
  54. Sowers, A. E., 1984, Characterization of electric field-induced fusion in erythrocyte ghost membranes, J. Cell Biol, 99: 1989.Google Scholar
  55. Sowers, A. E., 1983a, Fusion of mitochondrial inner membranes by electric fields produces inside out vesicles: visualization by freeze- fracture electron microscopy, Biochim. Biophys. Acta, 735: 426.CrossRefGoogle Scholar
  56. Sowers, A. E., 1983b, Red cell and red cell ghost membrane shape changes accompanying the application of electric fields for inducing fusion, J. Cell Biol, 97: 179a.Google Scholar
  57. Sowers, A. E., and Kapoor, V., 1988, The mechanism of erythrocyte ghost fusion by electric field pulses, in: “Proceedings of the International Symposium on Molecular Mechanisms of Membrane Fusion,” S. Ohki, ed., Plenum Press, New York.Google Scholar
  58. Sowers, A. E., and Kapoor, V., 1987a, The electrofusion mechanism in erythrocyte ghosts, in: “Cell Fusion,” A. E. Sowers, ed., Plenum Press, New York.Google Scholar
  59. Sowers, A. E., and Lieber, M. L., 1986, Electropores in individual erythrocyte ghosts: diameters, lifetimes, numbers, and locations, FEBS Lett, 205: 179.CrossRefGoogle Scholar
  60. Stenger, D. A., and Hui, S. W., 1986, Kinetics of ultrastructural changes during electrically induced fusion of human erythrocytes, J. Memb. Biol, 93: 43.CrossRefGoogle Scholar
  61. Stulen, G., 1981, Electric field effects on lipid membrane structure, Biochim. Biophys. Acta, 640: 621.CrossRefGoogle Scholar
  62. Sukharev, S. I., Bandrina, I. N., Barbul, A. I., Abidor, I. G., and Zelenin, A. V., 1987, Electrofusion of fibroblast-like cells, Stud. Biophys, 119: 45.Google Scholar
  63. Teissie, J., and Rols, M. P., 1986, Fusion of mammalian cells in culture is obtained by creating the contact between cells after their electropermeabilization, Biochem. Biophys. Res. Comm, 140: 258.CrossRefGoogle Scholar
  64. Teissie, J., Knutson, V. P., Tsong, T. Y., and Lane, M. D., 1982, Electric pulse-induced fusion in 3T3 cells in monolayer culture, Science, 216: 537.CrossRefGoogle Scholar
  65. Tomov, T. Ch., and Tsoneva, I. Ch., 1988, Electroinduction of long-lived membrane potentials in yeasts, Bioelectrochem. Bioenerget, 19: 397.CrossRefGoogle Scholar
  66. Tsong, T. Y., 1983, Voltage modulation of membrane permeability and energy utilization in cells, Biosci. Reports, 3: 487.CrossRefGoogle Scholar
  67. Tsong, T. Y., and Kingsley, E., 1975, Hemolysis of human erythrocyte induced by a rapid temperature jump, J. Biol. Chem, 250: 786.Google Scholar
  68. Weaver, J. C., Harrison, G. I., Bliss, J. G., Mourant, J. R., and Powell, K. T., 1988, Electroporation: high frequency of occurrence of a transient high-permeability state in erythrocytes and intact yeast, FEBS Lett, 229: 30.CrossRefGoogle Scholar
  69. Wojcieszyn, J. W., Schlegel, R. A., Lumley-Sapanski, K., and Jacobson, K. A., 1983, Studies on the mechanism of polyethylene glycol-mediated cell fusion using fluorescent membrane and cytoplasmic probes, J. Cell Biol, 96: 151.CrossRefGoogle Scholar
  70. Woodbury, J. W., 1960, The cell membrane: Ionic and potential gradients and active transport, in: “Medical Physiology and Biophysics,” T. C. Ruch, and J. F. Fulton, eds., Saunders, Philadelphia.Google Scholar
  71. Zhelev, D. V., Dimitrov, D. S., and Doinov, P., 1988, Correlation between physical parameters in electrofusion and electroporation of protoplasts, Bioelectrochem. Bioenerg, 20: 155.CrossRefGoogle Scholar
  72. Zimmerberg, J., Curran, M., Cohen, F. S., and Broderick, M., 1987, Simultaneous electrical and optical measurements show that membrane fusion precedes secretory granule swelling during exocytosis of beige mouse mast cells, Proc. Natl. Acad. Sci. USA, 84: 1585.CrossRefGoogle Scholar
  73. Zimmermann, U., 1982, Electric field-mediated fusion and related electrical phenomena, Biochim. Biophys. Acta, 694: 227.Google Scholar
  74. Zimmermann, U., 1986, Electrical breakdown, electropermeabilization and electrofusion, Rev. Physiol. Biochem. Pharmacol., 105: 175.Google Scholar
  75. Zimmermann, U., Buchner, K.-H., and Arnold, W. M., 1984, Electrofusion of cells: recent developments and relevance for evolution, in: “Charge and Field Effects in Biosystems,” M. J. Allen, and P. N. R. Usherwood, eds., Abacus Press, Normal, Illinois.Google Scholar
  76. Zimmermann, U., Scheurich, P., Pilwat, G., and Benz, R., 1981, Cells with manipulated functions: New perspectives for cell biology, medicine, and technology, Angew. Chem. Int. Ed. Engl, 20: 325.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Arthur E. Sowers
    • 1
  1. 1.The Jerome H. Holland LaboratoryAmerican Red CrossRockvilleUSA

Personalised recommendations