Effects of Copper Deficiency on the Immune System

  • Joseph R. Prohaska
  • Omelan A. Lukasewycz
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 262)


Copper is an essential metal for proper functioning of all living systems. Biochemical mechanisms have evolved that result in homeostatic balance of copper. This ensures that adequate but not toxic levels are absorbed, transported, utilized, and excreted. Throughout the biological kingdom copper expresses its function through specific ligands as free copper ion is rapidly complexed. These ligands are usually specific cuproenzymes. Knowledge of these cuproenzymes forms the basis of our current understanding of the biochemical function of copper (Prohaska, 1988).


Vasoactive Intestinal Peptide Copper Deficiency C57BL Mouse Stimulation Index Mitogen Reactivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, K. G. D., and Klevay, L. M., 1978, Cholesterolemia and cardiovascular abnormalities in rats caused by copper deficiency, Atherosclerosis, 29:81–93.CrossRefGoogle Scholar
  2. Allen, K. G. D., Arthur, J. R., Morrice, P. C., Nicol, F., and Mills, C. F., 1988, Copper deficiency and tissue glutathione concentration in the rat (42634), Proc. Soc. Exp. Biol. Med., 187:38–43.Google Scholar
  3. Barnea, A., Cho., G., and Hartter, D. E., 1988, A correlation between the ligand specificity for 67copper uptake and for copper-prostaglandin E2 stimulation of the release of gonadotropin-releasing hormone from median eminence explants, Endocrinology, 122:1505–1510.CrossRefGoogle Scholar
  4. Bell, J. G., Keen, C. L., and Lönnerdal, B., 1987, Effect of infant cereals on zinc and copper absorption during weaning, Am. J. Dis. Child., 141:1128–1132.Google Scholar
  5. Besedovsky, H., Del Rey, A., Sorkin, E., Da Prada, M., Burri, R., and Honegger, C., 1983, The immune response evokes changes in brain noradrenergic neurons, Science, 221:564–566.CrossRefGoogle Scholar
  6. Blakley, B. R., and Hamilton, D. L., 1987, The effect of copper deficiency on the immune response in mice, Drug-Nutr. Interactions, 5:103–111.Google Scholar
  7. Boyne, R., and Arthur, J. R., 1981, Effects of selenium and copper deficiency on neutrophil function in cattle, J. Comp. Pathol., 91:271–276.CrossRefGoogle Scholar
  8. Boyne, R., and Arthur, J. R., 1986, Effects of molybdenum or iron induced copper deficiency on the viability and function of neutrophils from cattle, Res. Vet. Sci., 41:417–419.Google Scholar
  9. Castillo-Duran, C., Fisberg, M., Valenzuela, A., Egaana, J. I., and Uauy, R., 1983, Controlled trial of copper supplementation during the recovery from marasmus, Am. J. Clin. Nutr., 37: 898–903.Google Scholar
  10. Danks, D. M., Campbell, P. E., Stevens, B. J., Mayne, V., and Cartwright, E., 1972, Menkes’s kinky hair syndrome, Pediatrics, 50:188–201.Google Scholar
  11. Davis, M. A., Johnson, W. T., Briske-Anderson, M., and Kramer, T. R., 1987, Lymphoid cell functions during copper deficiency, Nutr. Res., 7:211–222.CrossRefGoogle Scholar
  12. DePasquale-Jardieu, P., and Fraker, P. J., 1980, Further characterization of the role of corticosterone in the loss of humoral immunity in zinc-deficient A/J mice as determined by adrenalectomy, J. Immunol., 124:2650–2655.Google Scholar
  13. Duwe, A. K., Fitch, M., and Ostwald, R., 1981, Effects of dietary cholesterol on antibody- dependent phagocytosis and cell-mediated lysis in guinea pigs, J. Nutr., Ill: 1672–1680.Google Scholar
  14. Eason, S., Carville, D., Strain, J. J., and Hannigan, B. M., 1988, The influence of dietary carbohydrate on antibody-mediated immunity in copper deficiency, Biochem. Soc. Trans., 16:54–55.Google Scholar
  15. Eipper B. A., Mains, R. E., and Glembotski, C. C., 1983, Identification in pituitary tissue of a peptide α-amidation activity that acts on glycine-extended peptides and requires molecular oxygen, copper, and ascorbic acid, Proc. Natl. Acad. Sci. USA, 80:5144–5148.CrossRefGoogle Scholar
  16. Erickson, R. R., Prasad, J. S., and Holtzman, J. L., 1987, The role of NADPH- and reduced glutathione-dependent enzymes in the norepinephrine modulation of the ATP-dependent, hepatic microsomal calcium pump: a new pathway for the noradrenergic regulation of cytosolic calcium in the hepatocyte, J. Pharmacol. Exp. Ther., 242:472–477.Google Scholar
  17. Failla, M. L., Babu, U., and Seidel, K. E, 1988, Use of immunoresponsiveness to demonstrate that the dietary requirement for copper in young rats is greater with dietary fructose than dietary starch, J. Nutr., 118:487–496.Google Scholar
  18. Farquharson, C, and Robins, S. P., 1988, Female rats are susceptible to cardiac hypertrophy induced by copper deficiency: the lack of influence of estrogen and testosterone, Proc. Soc. Exp. Biol. Med., 188:272–281.Google Scholar
  19. Flynn, A., Loftus, M. A., and Finke, J. H., 1984, Production of interleukin-1 and interleukin- 2 in allogeneic mixed lymphocyte cultures under copper, magnesium and zinc deficient conditions, Nutr. Res., 4:673–679.CrossRefGoogle Scholar
  20. Flynn, A., and Yen, B. R., 1981, Mineral deficiency effects on the generation of cytotoxic T- cells and T-helper cell factors in vitro, J. Nutr., 111:907–913.Google Scholar
  21. Gibson, R. S., 1985, Dietary intakes of trace elements in young children, Food Nutr. News, 57: 21–24.Google Scholar
  22. Gross, A.M., and Prohaska, J.R., 1989, Copper-deficient mice have higher cardiac norepinephrine turnover, Fed. Proc. 48:in press.Google Scholar
  23. Grossman, C. J., 1985, Interactions between the gonadal steroids and the immune sytstem, Science, 227:257–261.CrossRefGoogle Scholar
  24. Habig, W. H., Pabst, M. J., and Jakoby, W. B., 1974, Glutathione S-transferases. The first enzymatic step in mercapturic acid formation, J. Biol. Chem., 249:7130–7139.Google Scholar
  25. Haschke, F., Ziegler, E. E., Edwards, B. B., and Fomon, S. J., 1986, Effect of iron fortification of infant formula on trace mineral absorption, J. Ped. Gastroenterol. Nutr., 5:768–773.CrossRefGoogle Scholar
  26. Heresi, G., Castillo-Durán, C., Muñoz, C., Arévalo, M., and Schlesinger, L., 1985, Phagocytosis and immunoglobulin levels in hypocupremic infants, Nutr. Res., 5:1327–1334.CrossRefGoogle Scholar
  27. Hoffmann, M. K., Mizel, S. B., and Hirst, J. A., 1984, IL 1 requirement for B cell activation revealed by use of adult serum, J. Immunol., 133:2566–2568.Google Scholar
  28. Jain, S. K., and Williams, D. M., 1988, Copper deficiency anemia: altered red blood cell lipids and viscosity in rats, Am. J. Clin. Nutr., 48:637–640.Google Scholar
  29. James, S. J., Swendseid, M., and Makinodan, T., 1987, Macrophage-mediated depression of T-cell proliferation in zinc-deficient mice, J. Nutr., 117:1982–1988.Google Scholar
  30. Johnson, W. T., and Kramer, T. R., 1987, Effect of copper deficiency on erythrocyte membrane proteins in rats, J. Nutr., 117:1085–1090.Google Scholar
  31. Jones, D. G., 1984, Effects of dietary copper depletion on acute and delayed inflammatory responses in mice, Res. Vet. Sci., 37:205–210.Google Scholar
  32. Jones, D. G., and Suttle, N. F., 1981, Some effects of copper deficiency on leucocyte function in sheep and cattle, Res. Yet. Science, 31:151–156.Google Scholar
  33. Jones, D. G., and Suttle, N. F., 1983, The effect of copper dieficiency on the resistance of mice to infection with Pasteurella haemolytica, J. Comp. Pathol., 93:143–149.CrossRefGoogle Scholar
  34. Kishore, V., Latman, N., Roberts, D. W., Barnett, J. B., and Sorenson, J. R. J., 1984, Effect of nutritional copper deficiency on adjuvant arthritis and immunocompetence in the rat, Agents and Actions, 14:274–282.CrossRefGoogle Scholar
  35. Koller, L. D., Mulhern, S. A., Frankel, N. C., Steven, M. G., and Williams, J. R., 1987, Immune dysfunction in rats fed a diet deficient in copper, Am. J. Clin. Nutr., 45:997–1006.Google Scholar
  36. Korte, J.J., Bailey, W.R., and Prohaska, J.R., 1988, Copper deficiency impairs development of murine hepatic glutathione transferase MII, Fed. Proc., 47: A1105.Google Scholar
  37. Korte, J. J., and Prohaska, J. R., 1987, Dietary copper deficiency alters protein and lipid composition of murine lymphocyte plasma membranes, J. Nutjr., 117:1076–1084.Google Scholar
  38. Kramer, T. R., Johnson, W. T., and Briske-Anderson, M., 1988, Influence of iron and the sex of rats on hematological, biochemical and immunological changes during copper deficiency, J. Nutr, 118:214–221.Google Scholar
  39. Lampi, K. J., Mathias, M. M., Rengers, B. D., and Allen, K. G. D., 1988, Dietary copper and copper dependent superoxide dismutase in hepatic prostaglandin synthesis by rat liver homogenates, Nutr. Res., 8:1191–1202.CrossRefGoogle Scholar
  40. Lawrence, R. A., and Jenkinson, S. G., 1987, Effects of copper deficiency on carbon tetrachloride-induĉed lipid peroxidation, J. Lab. Clin. Med 109:134–140.Google Scholar
  41. Lei, K. Y., Rosenstein, F., Shi, F., Hassel, C. A., Carr, T. P., and Zhang, J., 1988, Alterations in lipid composition and fluidity of liver plasma membranes in copper-deficient rats, Proc. Soc. Exp. Biol. Med., 188:335–341.Google Scholar
  42. Lukasewycz, O. A., Kolquist, K. L., and Prohaska, J. R., 1987, Splenocytes from copper- deficient mice are low responders and weak stimulators in mixed lymphocyte reactions, Nutr. Res., 7:43–52.CrossRefGoogle Scholar
  43. Lukasewycz, O. A., Kolquist, K. L., and Prohaska, J. R., 1988, Modulation in immunoglobulin (Ig) isotype production in copper-deficient mice, FASEB J., 2:A436.Google Scholar
  44. Lukasewycz, O. A., and Prohaska, J. R., 1982, Immunization against transplantable leukemia impaired in copper deficient mice, J. Natl. Cancer Inst., 69:489–493.Google Scholar
  45. Lukasewycz, O. A., and Prohaska, J. R., 1983, Lymphocytes from copper-deficient mice exhibit decreased mitogen reactivity, Nutr. Res., 3:335–341.CrossRefGoogle Scholar
  46. Lukasewycz, O. A., and Prohaska, J. R., 1989, Increased interleukin-1 (IL-1) and decreased interleukin-2 (IL-2) production in copper-deficient mice, FASEB J., 3:A665.Google Scholar
  47. Lukasewycz, O. A., Prohaska, J. R., Meyer, S. G., Schmidtke, J. R., Hatfield, S. M., and Marder, P., 1985, Alterations in lymphocyte subpopulations in copper-deficient mice, Infect. Immun., 48:644–647.Google Scholar
  48. Markwell, M. A. K., Haas, S. M., Bieber, L. L., and Tolbert, N. E., 1978, Modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples, Anal. Biochem., 87: 206–210.CrossRefGoogle Scholar
  49. Mishell, R. I., and Dutton R. W., 1967, Immunization of dissociated spleen cell cultures from normal mice, J. Exp. Med., 126:423–442.CrossRefGoogle Scholar
  50. Mitchell, L. L., Allen, K. G. D., and Mathias, M. M., 1988, Copper deficiency depresses rat aortae superoxide dismutase activity and prostacyclin synthesis, Prostaglandins, 35:977–986.CrossRefGoogle Scholar
  51. Miyajima, A., Miyatake, S., Schreurs, J., De Vries, J., Arai, N., Yokota, T., and Arai, E.-I., 1988, Coordinate regulation of immune and inflammatory responses by T cell-derived lymphokines, FASEB J., 2:2462–2473.Google Scholar
  52. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A., and Coffman, R. L., 1986, Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins, J. Immunol., 136:2348–2357.Google Scholar
  53. Mulhern, S. A., and Koller, L. D., 1988, Severe or marginal copper deficiency results in a graded reduction in immune status in mice, J. Nutr., 118:1041–1047.Google Scholar
  54. Mulhern, S. A., Raveche, E. S., Smith, H. R., and Lal, R. B., 1987, Dietary copper deficiency and autoimmunity in the NZB mouse, Am. J. Clin. Nutr., 46:1035–1039.Google Scholar
  55. Newberne, P. M., Hunt, C. E., and Young, V. R., 1968, The role of diet and the reticuloendothelial system in the response of rats to Samonella typhimurium infection, Br. J. Exp. Pathol., 49:448–457.Google Scholar
  56. Noelle, R. J., and Lawrence, D. A., 1981, Determination of glutathione in lymphocytes and possible association of redox state and proliferative capacity of lymphocytes, Biochem. J., 198:571–579.Google Scholar
  57. O’Dorisio, M. S., Wood, C. L., and O’Dorisio, T. M., 1985, Vasoactive intestinal peptide and neuropeptide modulation of the immune response, J. Immunol., 135:792s-796s.Google Scholar
  58. Oppenheimer, S. M., Hoffbrand, B. I., Dormandy, T. L., Parker, N., and Wickens, D. G., 1987, Macrocytic anaemia due to copper deficiency in a patient with late onset hypogammaglobulinaemia, Postgrad. Med. J., 63:205–207.CrossRefGoogle Scholar
  59. Pletcher, J. M., and Banting, L. F., 1983, Copper deficiency in piglets characterized by spongy myelopathy and degenerative lesions in the great blood vessels, J. So.Af. Vet Assoc., 54:43–46.Google Scholar
  60. Prohaska, J. R., 1983, Changes in tissue growth, concentrations of copper, iron, cytochrome oxidase and superoxide dismutase subsequent to dietary or genetic copper deficiency in mice, J. Nutr., 113:2048–2058.Google Scholar
  61. Prohaska, J. R., 1988, Biochemical functions of copper in animals, in: “Essential and Toxic Elements in Human Health and Disease,” A. S. Prasad, ed., Alan R. Liss, Inc., New York, NY, pp.105–124.Google Scholar
  62. Prohaska, J. R., and Cox, D. A., 1983, Decreased brain ascorbate levels in copper-deficient mice and in brindled mice, J. Nutr., 113:2623–2629.Google Scholar
  63. Prohaska, J. R., Cox, D. A., and Bailey, W. R., 1984, Ascorbic acid synthesis and concentrations in organs of copper-deficient and brindled mice, Biol. Trace Elem. Res., 6:441–453.CrossRefGoogle Scholar
  64. Prohaska, J. R., and DeLuca, K. L., 1988, Norepinephrine and dopamine distribution in copper-deficient mice, in: “Trace Elements in Man and Animals 6,” L. S. Hurley, C. L. Keen, B. Lonnerdal, and R. B. Rucker, eds., Plenum Press, New York, NY, pp. 109–111.Google Scholar
  65. Prohaska, J. R., Downing, S. W., and Lukasewycz, O. A., 1983, Chronic dietary copper deficiency alters biochemical and morphological properties of mouse lymphoid tissues, J. Nutr., 113:1583–1590.Google Scholar
  66. Prohaska, J. R., and Lukasewycz, O. A., 1981, Copper deficiency suppresses the immune response of mice, Science, 213:559–561.CrossRefGoogle Scholar
  67. Prohaska, J. R., and Lukasewycz, O. A., 1989, Biochemical and immunological changes in mice following postweaning copper deficiency, Biol. Trace Elem. Res., in press.Google Scholar
  68. Prohaska, J.R., Solem, L.E., and Lukasewycz, O.A., 1988a Variation in interleukin-2 (IL-2) production by copper-deficient mice. FASEB J., 2: A436.Google Scholar
  69. Prohaska, J. R., and Wells, W. W., 1975, Copper deficiency in the developing rat brain: evidence for abnormal mitochondria, J. Neurochem., 25:221–228.CrossRefGoogle Scholar
  70. Prohaska, J. R., Wittmers, L. E., and Haller, E. W., 1988b, Influence of genetic obesity, food intake, and adrenalectomy in mice on selected trace element-dependent protective enzymes, J. Nutr., 118:739–746.Google Scholar
  71. Rosenstreich, D. L., Farrar, J. J., and Dougherty, S., 1976, Absolute macrophage dependency of T lymphocyte activation by mitogens, J. Immunol., 116:131–139.Google Scholar
  72. Roth, R. A., and Koshland, M. E., 1981, Identification of a lymphocyte enzyme that catalyzes pentamer immunoglobulin M assembly, J. Biol. Chem., 256:4633–46539.Google Scholar
  73. Rusinko, N., and Prohaska, J. R., 1985, Adenine nucleotide and lactate levels in organs from copper-deficient mice and brindled mice, J. Nutr., 115:936–943.Google Scholar
  74. Sandstead, H. H., 1982, Copper bioavailability and requirements, Am. J. Clin. Nutr., 35:809–814.Google Scholar
  75. Simon, S. R., Branda, R. F., Tindle, B. H., and Burns, S. L., 1988, Copper deficiency and sideroblastic anemia associated with zinc ingestion, Am. J. Hematol., 28:181–183.CrossRefGoogle Scholar
  76. Thomas, W. R., and Holt, P. G., 1978, Vitamin C and immunity: an assessment of the evidence, Clin Exp. Immunol., 32:370–379.Google Scholar
  77. Vyas, E., and Chandra, R. K., 1983, Thymic factor activity, lymphocyte stimulation response and antibody producing cells in copper deficiency, Nutr. Res., 3:343–349.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Joseph R. Prohaska
    • 1
  • Omelan A. Lukasewycz
    • 1
  1. 1.Departments of Biochemistry and Medical Microbiology and ImmunologyUniversity of Minnesota, DuluthDuluthUSA

Personalised recommendations