Advertisement

Crystalline and Liquid Crystalline Order in Concentrated Colloidal Dispersions: An Overview

  • H. N. W. Lekkerkerker
Part of the NATO ASI Series book series (NSSB, volume 211)

Abstract

The equilibrium thermodynamic and structural properties of colloidal dispersions may be treated in the same way as in the case of simple liquids by considering the colloidal particles as “supramolecules” dispersed in a continuous (but fluctuating) back-ground. The potential which for the case of fluctuating forces replaces the interaction potential between molecules (in vacuo) is the potential of the average forces which act between the dispersed particles. This effective interaction is the input for statistical mechanical theories. Therefore statistical mechanical theories developed for simple fluids can be applied to colloidal dispersions. The theoretical basis for such a treatment was given by Onsager1 and Mc Millan and Mayer2. In recent years concepts of liquid state theory have been applied successfully to understand the behavior of concentrated colloidal dispersions3,4.

Keywords

Tobacco Mosaic Virus Hard Sphere Nematic Phase Colloidal Crystal Face Centre Cubic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Onsager, Chem. Rev. 13:73 (1933).CrossRefGoogle Scholar
  2. 2.
    W.G. Mc Millan and J.E. Mayer, J. Chem. Phys. 13:276 (1945).CrossRefGoogle Scholar
  3. 3.
    A. Vrij, E.A. Nieuwenhuis, H.M. Fijnaut and W.G.M. Agterof, Faraday Discuss. Chem. Soc. 65:7 (1978).CrossRefGoogle Scholar
  4. 4.
    C.G. de Kruif, J.W. Jansen, A. Vrij, in “Physics of Complex and Supramolecular Fluid”, S.A. Safran N.A. Clark, eds., Wiley, New York (1987) Google Scholar
  5. 5.
    J.G. Kirkwood, J. Chem. Phys. 7:919 (1939).CrossRefGoogle Scholar
  6. 6.
    BJ. Alder and T.E. Wainwright, J. Chem. Phys. 27:1208 (1957). Google Scholar
  7. 7.
    W.G. Hoover and F.H. Ree, J. Chem. Phys. 49:3609 (1968).CrossRefGoogle Scholar
  8. 8.
    M. Wadati and M. Toda, J. Phys. Soc. Jpn. 32:1147 (1972).CrossRefGoogle Scholar
  9. 9.
    For recent reviews see e g A.D.J. Haymet, Ann. Rev. Phys. Chem. 38:89 (1987), M.Baus, J. Stat. Phys. 48:1129 (1987) Google Scholar
  10. 10.
    W.F. Saam and C. Ebner, Phys. Rev. A15:2566 (1977).Google Scholar
  11. 11.
    W.G. Hoover, D.A. Young and R. Grover, J. Chem. Phys. 56:2207 (1972).CrossRefGoogle Scholar
  12. 12.
    M.O. Robbins, K. Kremer and G.S. Grest, J. Chem. Phys. 88:3286 (1988).CrossRefGoogle Scholar
  13. 13.
    X-G Wu and M. Baus, Mol. Phys. 62:375 (1987). Google Scholar
  14. 14.
    D. Hone, S. Alexander, P.M. Chaikin and P. Pincus, J. Chem. Phys. 79:1474 (1983).CrossRefGoogle Scholar
  15. 15.
    W.-H. Shih and D. Stroud, J. Chem. Phys. 79:6254 (1983).CrossRefGoogle Scholar
  16. 16.
    W.Y. Shih, I.A. Aksay and R. Kikuchi, J. Chem. Phys. 86:5127 (1987).CrossRefGoogle Scholar
  17. 17.
    A. Klug, R.E. Franklin and S.P.F. Humphreys-Owen, Biochem. Biophys. Acta 32:203 (1959).CrossRefGoogle Scholar
  18. 18.
    W. Luck, M. Klier and H. Wesslau, Ber. Bunsenges. Phys. Chem. 67:75 (1963).Google Scholar
  19. 19.
    P.A. Hiltner and I.M. Krieger, J. Phys. Chem. 73:2386 (1969).CrossRefGoogle Scholar
  20. 20.
    A. Kose and S. Hachisu, J. Colloid Interface Sci. 46:460 (1974).CrossRefGoogle Scholar
  21. 21.
    E.A. Nieuwenhuis and A. Vrii. J. Colloid Interface Sci. 72:321 (1979).CrossRefGoogle Scholar
  22. 22.
    L. Anti, J.W. Goodwin, R.D. Hill, R.H. Ottewill, S.W. Owens and S. Papworth, Colloids Surfaces 17:67 (1986).CrossRefGoogle Scholar
  23. 23.
    P.N. Pusey and W. van Megen, Nature 320:340 (1986).CrossRefGoogle Scholar
  24. 24.
    A.K. van Helden, J.W. Jansen and A. Vrij, J. Colloid Interface Sci. 81:354 (1981).CrossRefGoogle Scholar
  25. 25.
    CG. de Kruif, P.W. Rouw, J.W. Jansen and A. Vrij, J. Phys. (Paris) 46:C3–295 (1985).Google Scholar
  26. 26.
    R.D. Mountain and A.C. Brown, J. Chem. Phys. 80:2730 (1984).CrossRefGoogle Scholar
  27. 27.
    C. Smits, W.J. Briels, J.K.G. Dhont and H.N.W. Lekkerkerker, Progr. Colloid.Polvm. Sci. 79: xxx (1989) Google Scholar
  28. 28.
    S. Hachisu, Y. Kobayashi and A. Kose, J. Colloid Interface Sci. 42:342 (1973); 46:470 (1974). Google Scholar
  29. 29.
    R. Williams and R.S. Crandall, Phys. Lett. A48:225 (1975).Google Scholar
  30. 30.
    H.M. Lindsay and P.M. Chaikin, J. Chem. Phys. 76: 3774 (1982).CrossRefGoogle Scholar
  31. 31.
    Y. Monovoukas and A.P. Gast, J. Colloid Interface Sci. 128:533 (1989).CrossRefGoogle Scholar
  32. 32.
    S. Alexander, P.M. Chaikin, P. Grant, G.J. Morales, P. Pincus and D. Hone, J Chem. Phys. 80:5776 (1984).CrossRefGoogle Scholar
  33. 33.
    L. Onsager, Phys. Rev. 62:558 (1942); Ann. N.Y. Acad. Sci. 51:627 (1949). Google Scholar
  34. 34.
    D. Frenkel, J. Phys. Chem. 91:4912 (1987), 92:5314 (1988). Google Scholar
  35. 35.
    H.N.W. Lekkerkerker, Ph. Coulon, R. Van Der Haegen and R. Deblieck, J. Chem. Phys. 80:3427 (1984).CrossRefGoogle Scholar
  36. 36.
    M.A. Cotter, Phys. Rev. A10: 625 (1974).Google Scholar
  37. 37.
    H. Workman and M. Fixman, J. Chem. Phys. 58:5024 (1973).CrossRefGoogle Scholar
  38. 38.
    S.D. Lee, J. Chem. Phys. 87:4972 (1987).CrossRefGoogle Scholar
  39. 39.
    D. Frenkel, B.M. Mulder and LP. Mc Tague, Phys. Rev. Lett. 52:287 (1984); D. Frenkel and B.M. Mulder, Mol. Phys. 55: 1171 (1985). Google Scholar
  40. 40.
    J.L. Colot, X.G. Wu, H. Xu and M. Baus, Phys. Rev. A38:2022 (1988).Google Scholar
  41. 41.
    A. Stroobants, H.N.W. Lekkerkerker and Th. Odijk, Macromolecules 19:2232 (1986).CrossRefGoogle Scholar
  42. 42.
    M. Hosino, H. Nakano and H. Kimura, J. Phys. Soc. Jpn. 46:1709 (1979).CrossRefGoogle Scholar
  43. 43.
    A. Stroobants, H.N.W. Lekkerkerker and D. Frenkel, Phys. Rev. Lett. 57:1482 (1986); Phys. Rev. A36:2929 (1987). Google Scholar
  44. 44.
    B.M. Mulder, Phys. Rev. A35:3095 (1987).Google Scholar
  45. 45.
    X. Wen and R.B. Meyer, Phys. Rev. Lett. 59:1325 (1987).CrossRefGoogle Scholar
  46. 46.
    A.M. Somoza and P. Tarazona, Phys. Rev. Lett. 61:2566 (1988).CrossRefGoogle Scholar
  47. 47.
    M.P. Taylor, R. Hentschke and J. Herzfeld, Phys. Rev. Lett. 62:800 (1989).CrossRefGoogle Scholar
  48. 48.
    D. Frenkel, H.N.W. Lekkerkerker and A. Stroobants, Nature 332:822 (1988).CrossRefGoogle Scholar
  49. 49.
    J. Veerman and D. Frenkel, Personal communication. Google Scholar
  50. 50.
    A. Poniewierski and R. Hotyst, Phys. Rev. Lett. 61:2461 (1988).CrossRefGoogle Scholar
  51. 51.
    Th. Odijk, Macromolecules 19:2313 (1986).CrossRefGoogle Scholar
  52. 52.
    H. Zocher, Z. Anorg. Chem. 147:91 (1925).CrossRefGoogle Scholar
  53. 53.
    H. Zocher and W. Heller, Z. Anorg. Chem. 186:75 (1930).Google Scholar
  54. 54.
    H. Zocher and C. Torök, Kollod Z. 170:140 (1960); 173:1 (1960); 180:41 (1962). Google Scholar
  55. 55.
    J. Bugosh, J. Phvys. Chem. 65:1791 (1961).Google Scholar
  56. 56.
    F.C. Bawden, N.W. Pirie, J.D. Bernal and I. Fankuchen, Nature 138:1051 (1936).CrossRefGoogle Scholar
  57. 57.
    F.C. Bawden and N.W. Pirie, Proc. Rov. Soc. B123:274 (1937).CrossRefGoogle Scholar
  58. 58.
    J. Lapointe and D.A. Marvin, Mol. Crvst. Liq. Cryst. 19:269 (1973).CrossRefGoogle Scholar
  59. 59.
    J. Torbet and G. Maret, Biopolymers 20:2657 (1981).CrossRefGoogle Scholar
  60. 60.
    A.C. Allison, Biochem. J. 65:212 (1957).Google Scholar
  61. 61.
    R.H. Marchessault, F.F. Morehead and N.M. Walter, Nature 184:632 (1959).CrossRefGoogle Scholar
  62. 62.
    T. Folda, H. Hoffmann, H. Chanzy and P. Smith, Nature 333:55 (1988).CrossRefGoogle Scholar
  63. 63.
    RJ. Best, J. Austral. Inst. Agric. Sci. 5:94 (1939).Google Scholar
  64. 64.
    S. Fraden, G. Maret, D.L.D. Caspar and R.B. Meyer, to be published. Google Scholar
  65. 65.
    G. Maret and J. Torbet, unpublished. For an account of their results see G. Maret and K. Dransfeld in “Strong and Ultrastrong Magnetic Fields and Their Applications”, pp. 160–167, F. Herlach, ed., Springer, Berlin (1985). Google Scholar
  66. 66.
    G. Oster, J. Gen. Physiol. 33:445 (1950).CrossRefGoogle Scholar
  67. 67.
    U. Kreibig and C. Wetter, Z. Naturforsch. 35C:750 (1980).Google Scholar
  68. 68.
    J.A.N. Zasadzinski, M.J. Sammon, R.E. Meyer, M. Cahoon and D.L.D. Caspar, Mol. Cryst. Liq. Cryst. 138:211 (1986).CrossRefGoogle Scholar
  69. 69.
    F.P. Booy and A.G. Fowler, Int. J. Biol. Macromol. 7:327 (1985).CrossRefGoogle Scholar
  70. 70.
    J.H. Watson, R.R. Cardell and W. Heller, J. Phys. Chem. 66:1757 (1962).CrossRefGoogle Scholar
  71. 71.
    Y. Maeda and S. Hachisu, Colloids Surfaces 6:1 (1983); 7:357 (1983). Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • H. N. W. Lekkerkerker
    • 1
  1. 1.Van’t Hoff LaboratoriumRijksuniversiteit te UtrechtUtrechtThe Netherlands

Personalised recommendations