Skip to main content

Fundamentals Of Dendritic Growth

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 210))

Abstract

Dendritic growth is perhaps the most common form of solidification especially in metals and other systems that freeze with relatively low entropies of transformation. Dendritic or branched growth in alloys generates microsegregation as well as other internal defects in castings, ingots, and weldments. More subtle effects introduced by the complex dendritic microstructure in solidified materials include crystallographic texturing, hot cracking, suboptimal toughness, and reduced corrosion resistance. Moreover, the dendritic microstructure and its effects may be modified by subsequent heat treatments, but they are seldom fully “erased”. As such, the understanding and control of dendritic growth in solidification processing is crucial in order to achieve specific material properties in final products.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. C. Fisher, as referenced by Bruce Chalmers, “Principles of Solidification”, p. 105, John Wiley and Sons, New York (1964).

    Google Scholar 

  2. G. P. Ivantsov, Dokl. Akad. Nauk SSR., 58:567 (1947).

    Google Scholar 

  3. G. Horvay and J. W. Cahn, Acta Met., 9:695 (1961).

    Article  CAS  Google Scholar 

  4. G. F. Boiling and W. A. Tiller, J. Appl. Phys., 32:2587 (1961).

    Article  Google Scholar 

  5. R. F. Sekerka, R. G. Seidensticker, D. R. Hamilton and J. D. Harrison, Investigation of Desalination by Freezing, Westinghouse Res. Lab. Rep., Ch. 3 (1967).

    Google Scholar 

  6. M. E. Glicksman and R. J. Schaefer, J. Crystal Growth, 1:297 (1967).

    Article  CAS  Google Scholar 

  7. M. E. Glicksman and R. J. Schaefer, J. Crystal Growth, 2:239 (1968).

    Article  CAS  Google Scholar 

  8. D. E. Temkin, Dokl. Akad. Nauk SSR., 132:1307 (1960).

    Google Scholar 

  9. R. Trevedi, Acta Met., 18:287 (1970).

    Article  Google Scholar 

  10. G. E. Nash and M. E. Glicksman, Acta Met., 22:1283 (1974).

    Article  CAS  Google Scholar 

  11. M. E. Glicksman, R. J. Schaefer and J. D. Ayers, Met. Trans., A7:1747 (1976).

    Google Scholar 

  12. R. J. Schaefer, M. E. Glicksman and J. D. Ayers, Phil. Mag., 32:725 (1975).

    Article  CAS  Google Scholar 

  13. C. Zener, Trans. AIME, 167:550 (1964).

    Google Scholar 

  14. I. Jin and G. R. Purdy, J. Crystal Growth, 23:25 (1974).

    Article  Google Scholar 

  15. T. Fujioka, PhD Thesis, Carnegie-Mellon University (1978).

    Google Scholar 

  16. S. C. Hardy, Phil. Mag., 35:471 (1977).

    Article  CAS  Google Scholar 

  17. G. R. Kotier and W. A. Tiller, J. Crystal Growth, 2:287 (1968).

    Article  Google Scholar 

  18. R. Trivedi and W. A. Tiller, Acta Met., 26:67 (1979).

    Google Scholar 

  19. W. Oldfield, Mat. Sci. Engr., 11:211 (1973).

    Article  CAS  Google Scholar 

  20. R. D. Doherty, B. Cantor and S. Fairs, Met. Trans., A9:621 (1978).

    Google Scholar 

  21. W. W. Mullins and R. F. Sekerka, J. Appl. Phys., 34:323 (1963).

    Article  CAS  Google Scholar 

  22. J. S. Langer and H. Muller-Krumbhaar, Acta Met., 26:1681;1689;1697 (1978).

    Google Scholar 

  23. V. V. Voronkov, Sov. Phys. Solid St., 6:2378 (1964).

    Google Scholar 

  24. S. C. Huang and M. E. Glicksman, Acta Met., 29:701 (1981).

    Article  CAS  Google Scholar 

  25. S. R. Coriell and R. L. Parker, J. Appl. Phys., 36:632 (1965).

    Article  Google Scholar 

  26. S. R. Coriell and R. L. Parker, Proc. ICCG, Boston, Mass., 1966, Suppl. to J. Phys. Chem. Solids

    Google Scholar 

  27. H. Steffen Peiser, ed., J-3:703 (1967).

    Google Scholar 

  28. R. Trivedi, H. Franke and R. Lacmann, J. Crystal Growth, 47:389 (1979).

    Article  CAS  Google Scholar 

  29. Narsingh Bahadur Singh, private communication.

    Google Scholar 

  30. M. E. Glicksman and S. C. Huang, Adv. Space Res., 1:25 (1981).

    Article  CAS  Google Scholar 

  31. U. Lappe, KFA Report, Kernforschungsanlage Jülich, FRG (1980).

    Google Scholar 

  32. S. C. Huang, PhD Thesis, Rensselaer Polytechnic Institute (1979).

    Google Scholar 

  33. J. S. Langer and H. Müller-Krumbhaar, J. Crystal Growth, 42:11 (1977).

    Article  CAS  Google Scholar 

  34. J. S. Langer, Rve. Mod. Phys., 52, No. 1:1 (1980).

    Article  Google Scholar 

  35. M. H. Burden and J. D. Hunt, J. Crystal Growth, 22:99 (1974).

    Article  CAS  Google Scholar 

  36. S. Witzke, J. P. Riquet and F. Durand, Acta Met., 29:365 (1981).

    Article  CAS  Google Scholar 

  37. Hasse Fredricksson, in: “Materials Processing in the Reduced Gravity Environment of Space”

    Google Scholar 

  38. G. E. Rindone, ed., p. 619, Elsevier, Amsterdam (1982).

    Google Scholar 

  39. R. Trivedi and W. A. Tiller, Acta Met., 26:679 (1978).

    Article  CAS  Google Scholar 

  40. J.S. Langer, Phys. Chem. Hydrodyn., 1:41 (1980).

    CAS  Google Scholar 

  41. C. Lindenmeyer, PhD Thesis, Harvard University (1959).

    Google Scholar 

  42. M.E. Glicksman, Narsingh Bahadur Singh and M. Chopra, in: “Materials Processing in the Reduced Gravity Environment of Space”

    Google Scholar 

  43. G. E. Rindone, ed., p. 461, Elsevier, Amsterdam (1982).

    Google Scholar 

  44. W. Kurz, J. Lipton and M. E. Glicksman, unpublished work (1983).

    Google Scholar 

  45. M. Chopra, PhD Thesis, Rensselaer Polytechnic Institute (1983).

    Google Scholar 

  46. J. Lipton, M. E. Glicksman and W. Kurz, Mater. Sci. Eng., 65:57–63 (1984).

    Article  CAS  Google Scholar 

  47. W. Kurz and D. J. Fisher, Acta Met., 29:11–20 (1981).

    Article  CAS  Google Scholar 

  48. J. Lipton, M. E. Glicksman and W. Kurz, Met. Trans., 18A:341–345 (1987).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Glicksman, M.E. (1989). Fundamentals Of Dendritic Growth. In: Arend, H., Hulliger, J. (eds) Crystal Growth in Science and Technology. NATO ASI Series, vol 210. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0549-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0549-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7861-0

  • Online ISBN: 978-1-4613-0549-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics