Crystal Growth and Geosciences

  • Ichiro Sunagawa
Part of the NATO ASI Series book series (NSSB, volume 210)


In any geological processes, irrespective of the places where they occur, nucleation, growth, dissolution, transformation or replacement of crystals are involved. Through these processes, weathering, superficial precipitation, diagenesis, metamorphism, metasomatism, and magmatic crystallization proceed, and sedimentary, metamorphic and igneous rocks or ore deposits are formed. Depending on how and under what conditions these processes proceed, different mineral assemblages, different morphologies and perfections of crystals, and different textures of rocks or ores appear. Therefore, it is essential to understand the fundamentals of crystal growth mechanisms so as to properly analyze the genesis of minerals, rocks and ores, which is one of the main subject of geosciences.


Growth Unit Crystal Growth Mechanism Natural Diamond Crystal High Temperature Quartz Buoyancy Drive Convection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Sunagawa, Natural crystallization, J. Crystal Growth, 42:214–223 (1977) Vapour growth and epitaxy of minerals and synthetic crystals, J. Crystal Growth, 45:3–12 (1978).Google Scholar
  2. 2.
    I. Sunagawa, Characteristics of crystal growth in nature as seen from the morphology of mineral crystals, Bull. Mineral., France, 104:81–87 (1981).Google Scholar
  3. 3.
    I. Sunagawa, Growth of crystls in nature, in: “Materials Science of The Earth’s Interior”Google Scholar
  4. I. Sunagawa, ed.. PP 63–105, Terra Sci. Publ. Co., Tokyo/D. Reidel Pub. Co., Dordrecht (1984a).Google Scholar
  5. 4.
    W. F. Berg, Crystal growth from solutions, Proc. Roy. Soc., London, A164:79–95 (1938).Google Scholar
  6. 5.
    F. C. Frank, Defects in diamond, in: “Proc. Intern. Indust. Diamond Conf., Oxford”Google Scholar
  7. R. Berman, ed., pp 119–135, Industrial Diamond Information Bureau, London (1966).Google Scholar
  8. 6.
    J. W. Harris and J. J. Gurney, Inclusions in diamond, in: “Physical Properties of Diamond”Google Scholar
  9. R. Berman, ed., pp 555–591, Academic Press, Oxford (1979).Google Scholar
  10. 7.
    I. Sunagawa, Morphology of natural and synthetic diamond crystals, in: “Materials Science of The Earth’s Interior”Google Scholar
  11. I. Sunagawa, ed., 264 pp 303–330, Terra Sic. Pub. Co., Tokyo/D. Reidel Pub. Co., Dordrecht (1984b).Google Scholar
  12. 8.
    I. Sunagawa, K. Tsukamoto and T. Yasuda, Surface microtopographic and X-ray topographic study of octahedral crystals of natural diamond from Siberia, in: “Materials Science of The Earth’s Interior”Google Scholar
  13. I. Sunagawa, ed., pp 331–349, Terra Sci. Pub. Co., Tokyo/D. Reidel Pub. Co., Dordrecht (1984).Google Scholar
  14. 9.
    A. R. Lang, Internal structure, in: “The Properties of Diamond”Google Scholar
  15. J. E. Field, ed., pp 425–469, Academic Press, London (1979).Google Scholar
  16. 10.
    I. Sunagawa and A. Sugibuchi, Growth and post-growth histories of high quartz as revealed by natural and laboratorical etching, J. Japan. Assoc. Min. Petr. Econ. Geol., 81:348–358 (1986).Google Scholar
  17. 11.
    I. Sunagawa and Y. Koshino, Growth spirals on kaolin group minerals, Amer. Mineral., 60:407–412 (1975).Google Scholar
  18. 12.
    S. Tomura, M. Kitamura and I. Sunagawa, Surface microtopography of metamorphic white mica, Phys. Chem. Minerals, 4:1–17 (1979).Google Scholar
  19. 13.
    A. Baronnet, Ostwald ripening in solution, the case of calcite and mica, Estudios Geol., 38:185–198 (1982).Google Scholar
  20. 14.
    A. W. Hofmann, B. J. Giletti, H. S. Yoder, Jr. and R. A. Yund, eds., Geochemical Transport and Kinetics, Carnegie Institute of Washington, Washington, pp 353 (1974).Google Scholar
  21. 15.
    R. B. Hargraves, ed., Physics of Magmatic Processes, Princeton Univ. Press, N.J., pp 585 (1980).Google Scholar
  22. 16.
    I. Sunagawa and P. Bennema, Morphology of growth spirals, theoretical and experimental, in: “Preparation and Properties of Solid State Materials”Google Scholar
  23. W. A. Wilcox, ed., Vol. 7, pp 1–129, Marcel Dekker Inc., New York (1982).Google Scholar
  24. 17.
    I. Sunagawa, Morphology of crystals in relation to growth conditions, Estudios Geol., 38:127–134 (1982).Google Scholar
  25. 18.
    A. Kouchi, A. Tsuchiyama and I. Sunagawa, Effect of stirring on crystallization kinetics of basalt: texture and element partitioning, Contrib. Mineral. Petrol., 93:429–438 (1986).Google Scholar
  26. 19.
    A. Kouchi and I. Sunagawa, Mixing basaltic and dacitic magmas by forced convection, Nature, 304:527–528 (1983).Google Scholar
  27. 20.
    A. Kouchi and I. Sunagawa, A model for mixing basaltic and dacitic magmas as deduced from experimental data, Contrib. Mineral. Petrol., 89:17–23 (1985).Google Scholar
  28. 21.
    H. E. Huppert, Multicomponent crystallization and convection beneath volcanoes, J. Crystal Growth, 79:12–18 (1986).Google Scholar
  29. 22.
    K. Onuma, Role of mass flow in aqueous solution growth, MSc Thesis, Tohoku Univ. (1986).Google Scholar
  30. 23.
    K. Tsukamoto, In-situ direct observation of a crystal surface and its surroundings, in: “Morphology and Growth Unit of Crystals, Proceedings of the Oji International Seminar”Google Scholar
  31. I. Sunagawa, ed., Terra Sci. Pub. Co., Tokyo/D. Reidel Pub. Co., Dordrecht, to be published.Google Scholar
  32. 24.
    K. Tsukamoto, In-situ observation of mono-molecular growth steps on crystals growing in aqueous solution, I., J. Crystal Growth, 61:199–209 (1983).Google Scholar
  33. 25.
    K. Tsukamoto, T. Abe and I. Sunagawa, In-situ observation of crystals growing in high temperature melts and solutions, J. Crystal Growth, 63:215–218 (1983).Google Scholar
  34. 26.
    K. Tsukamoto and I. Sunagawa, In-situ observation of mono-molecular growth steps on crystals growing in aqueous solution, II. Specially designed objective lens and Nomarski prism for in-situ observation by reflected light, J. Crystal Growth, 71:183–190 (1985).Google Scholar
  35. 27.
    H. Nakamura, Observation and analysis of metastable nucleation in some silicate systems, MSc Thesis, Tohuku Univ. (1986).Google Scholar

Suggested Books and Review Papers

  1. R. A. Berner, “Early Diagenesis, A Theoretical Approach”, Princeton Univ. Press, N.J., pp 241 (1980).Google Scholar
  2. D. P. Grigoriev, “Ontogeny of Minerals”, Israel Programme for Scientific Translations, Jerusalem, pp 250 (1965).Google Scholar
  3. D. P. Grigoriev and A. G. Jeabin, “Ontogeny of Minerals”, Nauka,Moscow, pp 339, in Russian (1975).Google Scholar
  4. G. G. Lemmiein, “Morfologiya i genezis kristallov (“Crystal Morphology and Genesis”), Nauka, Moscow, in Russian (1973).Google Scholar
  5. S. K. Saxena, “Kinetics and Equilibrium in Mineral Reactions”, Springer-Verlag, New York, pp 273 (1983).Google Scholar
  6. A. Spry, “Metamorphic Textures”, Pergamon Press, Oxford, pp 350 (1979).Google Scholar
  7. R. L. Stanton, “Ore Petrology”, McGraw-Hill Book Co., New York, pp 713 (1972).Google Scholar
  8. I. Sunagawa, ed., “Materials Science of The Earth’s Interior”, pp 653, Terra Sci. Pub. Co., Tokyo/D. Reidel Pub. Co., Dordrecht (1984).Google Scholar
  9. I. Sunagawa, ed., “Morphology of Crystals, Part A, B”, pp 743, Terra Sci. Pub. Co. Tokyo/D. Reidel Pub. Co., Dordrecht (1988).Google Scholar
  10. R. H. Vernon, “Metamorphic Processes, Reactions and Microstructure Development”, George Allen &Unwin Ltd., London, pp 247 (1976).Google Scholar
  11. W. A. Tiller, On the cross-pollenation of crystallization ideas between metallurgy and geology, Phys. Chem. Minerals, 2:125–151 (1977).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Ichiro Sunagawa
    • 1
  1. 1.Institute of Mineralogy, Petrology and Economic Geology, Faculty of ScienceTohoku UniversitySendai 980Japan

Personalised recommendations