Advertisement

Biogenesis of Peroxisomes

  • H. F. Tabak
  • B. Distel

Abstract

All eukaryotic cells possess the same basic architectural design. They are divided in specific sub-compartments or organelles, each of which is equipped to carry out its particular function in biosynthetic or degradative processes. These different functions are each mediated by specific proteins and most of them are unique for a certain type of organelle. It requires that newly synthesised proteins are routed to the organelles or membrane structures to which they belong.

Keywords

Phosphoglycerate Kinase Alcohol Oxidase Peroxisomal Membrane Peroxisomal Protein Endoplasmatic Reticu 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    . W.T. Wickner, and H.F. Lodish, Multiple mechanisms of protein insertion into and across membranes. Science 230: 400–407 (1985)PubMedCrossRefGoogle Scholar
  2. 2.
    . M.G. Douglas, M.T. McCammon, and A. Vassarotti, Targeting proteins into mitochondria. Microbiol. Rev. 50: 166–178 (1986)Google Scholar
  3. 3.
    . G.W. Schmidt, and M.L. Mishkind, The transport of proteins into chloroplasts. Annu. Rev. Biochem. 55: 879–912 (1986)CrossRefGoogle Scholar
  4. 4.
    . C. Dingwall, and R.A. Laskey, Protein import into the cell nucleus. Annu. Rev. Cell Biol. 2: 367–390 (1986)CrossRefGoogle Scholar
  5. 5.
    . P. Borst, How proteins get into microbodies (peroxisomes, glyoxysomes, glycosomes). Biochem. Biophys. Acta 866: 179–203 (1986)Google Scholar
  6. 6.
    . P.B. Lazarow, and C. de Duve, A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc. Natl, Acad. Sci. USA 73: 2043–2046 (1976)CrossRefGoogle Scholar
  7. 7.
    . S. Kawamoto, C. Nozaki, A. Tanaka, and S. Fukui, Fatty acid (3-oxidation system in microbodies of n-alkane-grown Candida tropicalis. Eur. J. Biochem. 83: 609–613 (1978)PubMedCrossRefGoogle Scholar
  8. 8.
    . S. Goldfischer and J.K. Reddy, Peroxisomes (microbodies) in cell pathology. Int. Rev. Exp. Pathol. 26: 45–84 (1984)PubMedGoogle Scholar
  9. 9.
    . M. Veenhuis, J.P. Van Dijken, S.A.F. Pilon, and W. Harder, Development of crystalline peroxisomes in methanol-grown cells of the yeast Hansenula polymorpha and its relation to environmental conditions. Arch. Microbiol. 117: 153–163 (1978)Google Scholar
  10. 10.
    . P.B. Lazarow, and Y. Fujiki, Biogenesis of peroxisomes. Annu. Rev. Cell Biol. 1: 489–530 (1985)CrossRefGoogle Scholar
  11. 11.
    . B.W. Swinkels, R. Evers, and P. Borst, The topogeneic signal of the glycosomal (microbody) phosphoglycerate kinase of Crithidia fasciculata resides in a carboxy-terminal extension. EMBO J. 7: 1159–1165 (1988)PubMedGoogle Scholar
  12. 12.
    . G.-A. Keller, S. Gould, M. Deluca, and S. Subramani, Firefly luciferase is targeted to peroxisomes in mammalian cells. Proc. Natl. Acad. Sci. USA 84: 3264–3268 (1987)PubMedCrossRefGoogle Scholar
  13. 13.
    . S.J. Gould, G.-A. Keller, and S. Subramani, Identification of a peroxisomal targeting signal at the carboxyterminus of firefly luciferase. J. Cell. Biol. 105: 2923–2931 (1987)PubMedCrossRefGoogle Scholar
  14. 14.
    . S.J. Gould, G.-A. Keller, and S. Subramani, Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins. J. Cell. Biol. 107: 897–906 (1988)PubMedCrossRefGoogle Scholar
  15. 15.
    . B. Distel, M. Veenhuis, and H.F. Tabak, Import of alcohol oxidase into peroxisomes of Saccharomyces cerevisiae. EMBO J. 6: 3111–3116 (1987)PubMedGoogle Scholar
  16. 16.
    H. Hansen, and R, Roggenkamp, Import of proteins into peroxisomes: use of gene fusions and deletions for the identification of functional domains. Abstr. 14th Int. Congres on Yeast Genetics and Molecular Biology, Helsinki, Finland.Google Scholar
  17. 17.
    . E.C. Hurt, and G. Schatz, A cytosolic protein contains a cryptic mitochondrial targeting signal. Nature 325: 499–503 (1987)PubMedCrossRefGoogle Scholar
  18. 18.
    . G.P. Mannaerts, and P.P. van Veldhoven, Permeability of the peroxisomal membrane. In: Peroxisomes in Biology and Medicine, H.D. Fahimi and H. Sies, editors, Springer, Berlin, 169–176 (1987)Google Scholar
  19. 19.
    . M. Eilers, and G. Schatz, Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria. Nature 322: 228–232 (1986)PubMedCrossRefGoogle Scholar
  20. 20.
    . Nt Pfanner, F.-U. Hartl, and W. Neupert, Import of proteins into mitochondria: a multiple-step process. Eur. J. Biochem. 175: 205–212 (1988)PubMedCrossRefGoogle Scholar
  21. 21.
    . A.C. Douma, M. Veenhuis, G.J. Suiter, and W. Harder, A proton-translocating adenosine triphosphatase is associated with the peroxisomal membrane of yeasts. Arch. Microbiol. 147: 42–47 (1987)Google Scholar
  22. 22.
    . G.M. Small, L.J. Szabo and P.B. Lazarow, Acyl-CoA oxidase contains two targeting signals each of which can mediate protein import into peroxisomes. EMBO J. 7: 1167–1173 (1988)PubMedGoogle Scholar
  23. 22.
    . G.M. Small, L.J. Szabo and P.B. Lazarow, Acyl-CoA oxidase contains two targeting signals each of which can mediate protein import into peroxisomes. EMBO J. 7: 1167–1173 (1988)PubMedGoogle Scholar
  24. 24.
    . M. Veenhuis, J.P. van Dijken and W. Harder, The significance of peroxisomes in the metabolism of one-carbon compounds in yeast. In: Advances in Microbial Physiology, A.H. Rose, J. Gareth Morris and D.W. Tempest, editors, Acad. Press New York. 1–82 (1983)Google Scholar
  25. 25.
    . M. Veenhuis, J.P. van Dijken, W. Harder and F. Mayer, Substructure of crystalline peroxisomes in methanol-grown Hansenula polymorpha: evidence for an in vivo crystal of alcohol oxidase. Molec. Cell Biol. 1: 949–957 (1981)Google Scholar
  26. 26.
    . A.C. Douma, M. Veenhuis, W. de Koning, M. Evers and W. Harder, Dihydroxyacetone synthase is localized in the peroxisomal matrix of methanoI-grown Hansenula polymorpha. Arch. Microbiol. 143: 237–243 (1985)Google Scholar
  27. 27.
    . J.M. Goodman, Dihydroxyacetone synthase is an abundant constituent of the methanol-induced peroxisome of Candida boidinii. J. Biol. Chem. 260: 7108–7113 (1985)PubMedGoogle Scholar
  28. 28.
    . J.M. Goodman, C.W. Scott, P.N. Donahue and J.P. Atherton, Alcohol oxidase assembles post-translationally into the peroxisome of Candida boidinii. J. Biol. Chem. 259: 8485 - 8493 (1984)PubMedGoogle Scholar
  29. 29.
    . E. Bellion and J.M. Goodman, Proton ionophores prevent assembly of a peroxisomal protein. Cell 48: 165–173 (1987)PubMedCrossRefGoogle Scholar
  30. 30.
    . T. Imanaka, G.M. Small and P.B. Lazarow, Translocation of acyl-CoA oxidase into peroxisomes requires ATP hydrolysis but not a membrane potential. J. Cell Biol. 105: 2915–2922 (1987)PubMedCrossRefGoogle Scholar
  31. 31.
    . B. Distel, I. Van Der Ley and H.F. Tabak, Alcohol oxidase expressed under non-methylotrophic conditions is imported, assembled and enzymatically active in peroxisomes of Hansenula polymorpha. J. Cell. Biol. 107: 1669–1675 (1988)PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • H. F. Tabak
    • 1
  • B. Distel
    • 1
  1. 1.Laboratory of BiochemistryUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations