Polymer Adsorption at the Solid-Liquid Interface: The Interfacial Concentration Profile

  • I. Caucheteux
  • H. Hervet
  • F. Rondelez
  • L. Auvray
  • J. P. Cotton


Evanescent wave induced fluorescence (EWIF) and small angle neutron scattering (SANS) experiments have been performed at the polymer solution-solid interface, in the case of adsorption. The interfacial layer is characterized by its total surface excess Γ and by the monomer concentration profile Φ(z) in the direction normal to the interface.

EWIF has been used to study the adsorption of poly(methylmethacrylate) (PMMA) onto sapphire. Polymer molecular weights are 120,000 and 600,000 and some chains have been labelled with anthracene chromophores to allow fluorescence excitation by the optical evanescent wave. The surface excess is measured to be 1.47 mg/m2. Moreover, the first moment of the monomer distribution, <z>, can be evaluated. The observed value <z> = 73Å, is comparable to the chain radius of gyration, R G , in good agreement with the theoretical models. The determination of higher moments of the distribution is not accessible with the present system. It would require the use of chains with molecular weights in the range 106–107.

SANS is not prone to this limitation. The full concentration profile has been measured for two different systems, namely poly(methylmethacrylate) (M w = 265,000) adsorbed onto γ-alumina and poly(dimethylsiloxane) adsorbed onto porous silica. In both cases the results are in support of the scaling law behavior Φ(z) α(a/z)4/3. The profile is self-similar, as predicted by de Gennes, in the central region Z min < z < R G . Distances smaller than Z min correspond to the proximal region. The measured width Z min depends on the particular system. It is close to a monomer length ≃ 2.5 Å in the case of the highly flexible poly(dimethylsiloxane) chains. It is significantly higher, ≃ 11.5 Å, for poly(methylmethacrylate). This latter value is compatible with the PMMA chain persistence length. Finally, the surface excess measured by SANS, Γ = 1.7 mg/m2 is in fair agreement with the value measured by EWIF on the PMMA-sapphire system.

In a separate experiment, the possibility of monitoring fast adsorption kinetics by EWIF is demonstrated.


Evanescent Wave Persistence Length Small Angle Neutron Scattering Surface Excess Scatter Length Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See the recent review by M. Cohen Stuart, T. Cosgrove and B. Vincent, Adv. Colloid Interface Sci., 24, 143 (1986).Google Scholar
  2. 2.
    J.M.H.M. Scheutjens and G.J. Fleer, J. Phys. Chem. 83, 1619 (1979), J. Phys. Chem. 84, 178 (1980), Adv. Colloid Interface Sci., 16, 341 (1982).CrossRefGoogle Scholar
  3. 3.
    P.G. de Gennes, Macromolecules, 14, 1637 (1981).CrossRefGoogle Scholar
  4. 4.
    P.G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, 2nd Ed. (1985).Google Scholar
  5. 5.
    J. des Cloizeaux, J. Phys., (Paris) 49, 699 (1988).CrossRefGoogle Scholar
  6. 6.
    I.D. Robb and R. Smith, Europ. Polym. J., 10, 1005 (1974).CrossRefGoogle Scholar
  7. 7.
    T. Cosgrove and B. Vincent, Macromolecules, 14, 1018 (1981).CrossRefGoogle Scholar
  8. 8.
    M. Cohen-Stuart, J. Colloid Interface Sci., 90, 321 (1982).CrossRefGoogle Scholar
  9. 9.
    M. Kawaguchi, K. Hayakawa and A. Takahashi, Macromolecules, 16, 631, 1465 (1983).CrossRefGoogle Scholar
  10. 10.
    Z. Priel and A. Silberberg, J. Polym. Sci., 16, 1917 (1978).Google Scholar
  11. 11.
    R. Varoqui and P. Dejardin, J. Chem. Phys., 66, 4395 (1977).CrossRefGoogle Scholar
  12. 12.
    C. Allain, D. Aussèrré and F. Rondelez, Phys. Rev. Lett., 49, 1694 (1982).CrossRefGoogle Scholar
  13. 13.
    D. Aussèrré, H. Hervet and F. Rondelez Phys. Rev. Lett., 54, 1948 (1985), Macromolecules, 19, 85 (1986).CrossRefGoogle Scholar
  14. 14.
    J. des Cloizeaux and G. Jannink, Les Polymères en solution, Les Editions de Physique, Les Ulis (1987).Google Scholar
  15. 15.
    B. Cabane in Colloïdes et Interfaces, p. 101, A.M. Cazabat and M. Veyssié eds. Les Editions de Physique, Les Ulis (1984).Google Scholar
  16. 16.
    K.G. Barnett, T. Cosgrove, B. Vincent, A.W. Burgess, T.L. Crowley, T. King, J.D. Turner and Th.F. Tadros, Polym. Commun., 22, 283 (1981).Google Scholar
  17. 17.
    T. Cosgrove, T.L. Crowley, B. Vincent, K.G. Barnett and Th.F. Tadros, Faraday Symp. Chem. Soc., 16, 101 (1982).CrossRefGoogle Scholar
  18. 18.
    X.D. Sun, E. Bouchaud, A. Lapp, B. Farnoux, M. Daoud and G. Jannink, Europhys. Lett., 6, 207 (1988).CrossRefGoogle Scholar
  19. 19.
    X.D. Sun, B. Farnoux, J. des Cloizeaux and G. Jannink, This volume of Proceedings.Google Scholar
  20. 20.
    L. Auvray, C.R. Acad. Sci. (Paris) Ser. 2, 302, 859 (1986).Google Scholar
  21. 21.
    T. Cosgrove, T.G. Heath, K. Ryan and B. Van Lent, Polym. Commun., 28, 64 (1987).Google Scholar
  22. 22.
    T. Cosgrove, T.G. Heath, K. Ryan and T.L. Crowley, Macromolecules, 20, 2879 (1987).CrossRefGoogle Scholar
  23. 23.
    L. Auvray and P.G. de Gennes, Europhys. Lett., 2, 647 (1986).CrossRefGoogle Scholar
  24. 24.
    L. Auvray and J.P. Cotton, Macromolecules, 20, 202 (1987).CrossRefGoogle Scholar
  25. 25.
    P.G. de Gennes, C.R. Acad. Sci. (Paris), 302, II, 55 (1986), 302, II, 765 (1986), 301, II, 1399 (1985).Google Scholar
  26. 26.
    H. Hervet, L. Leger and F. Rondelez, Phys. Rev. Lett., 42, 1681 (1979).CrossRefGoogle Scholar
  27. 27.
    J. Davoust, P.F. Devaux and L. Leger, Embo. J., 1, 1233 (1982).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • I. Caucheteux
    • 1
  • H. Hervet
    • 1
  • F. Rondelez
    • 1
  • L. Auvray
    • 2
  • J. P. Cotton
    • 2
  1. 1.Physique de la Matière CondenséeUA 792, Collège de FranceParis Cédex 05France
  2. 2.Laboratoire Léon Brillouin(CEA-CNRS), CEN-SaclayCédexFrance

Personalised recommendations