Advertisement

Mutual Diffusion in the Miscible Polymer Blend: Polystyrene:Poly (Xylenyl Ether)

  • R. J. Composto
  • E. J. Kramer
  • Dwain M. White

Abstract

We have used forward recoil spectrometry to measure the mutual diffusion and tracer diffusion coefficients, D and D*, in the miscible polymer blend of deuterated polystyrene (d-PS):poly(xylenyl ether) (PXE). Using the “fast theory” of mutual diffusion, D is related to the D*, degree of polymerization N, and volume fraction φ of the individual blend components by, D = 2 φ (1-φ) [D* PS N PS + φD* PXE N PXE ](χ S -χ), where χ and χs are tne Flory interaction parameter of the blend and its value at the spinodal. From the measured values of the D*’s and D at a volume fraction φ=0.55 of d-PS, the interaction parameter χ=0.112-62/T was estimated as a function of temperature T(K). At low T, D was much larger than D*’s due to the large negative value of χ whereas at high T, D becomes less than the D*’s as χ becomes positive (thermodynamic slowing down). Similar measurements show that χ is not markedly composition-dependent in the d-PS:PXE blends.

Keywords

Lower Critical Solution Temperature Mutual Diffusion Entire Composition Range Tracer Diffusion Coefficient Mutual Diffusion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.G. de Gennes, J. Chem Phys., 55, 572 (1971).CrossRefGoogle Scholar
  2. 2.
    For a review of tracer diffusion see M. Tirrell, Rubber Chem. Technol., 57, 523 (1984).CrossRefGoogle Scholar
  3. 3.
    P.G. de Gennes, J. Chem. Phys., 72, 4756 (1980).CrossRefGoogle Scholar
  4. 4.
    R.J. Composto, J.W. Mayer, E.J. Kramer and D.M. White, Phys. Rev. Lett., 57, 1312 (1986).CrossRefGoogle Scholar
  5. 5.
    R.J. Composto, E.J. Kramer and D.M. White, Nature, 328, 1980 (1987).CrossRefGoogle Scholar
  6. 6.
    R.A.L. Jones, J. Klein and A.M. Donald, Nature, 321, 161 (1986).CrossRefGoogle Scholar
  7. 7.
    R.A.L. Jones, S.A. Rocca, A.M. Donald and J. Klein, to be published.Google Scholar
  8. 8.
    P.T. Gilmore, R. Falabella and R.L. Laurence, Macromolecules, 13, 880 (1980).CrossRefGoogle Scholar
  9. 9.
    (a) R.W. Garabella and J.H. Wendorff, Makromol. Chem. Rapid Commun., 7, 591 (1986). (b) R.W. Garabella and J.H. Wendorff, submitted to Macromolecules.CrossRefGoogle Scholar
  10. 10.
    S. Wu, H.K. Chuang and C.D. Han, J. Polym. Sci.;Polym. Phys. Ed., 24, 143 (1986).CrossRefGoogle Scholar
  11. 11.
    (a) U. Murshall, E.W. Fisher and C. Herkt-Maetzky and G. Fytas, J. Polym. Sci.;Polym. Lett., 24, 191 (1986). (b) M.G. Brereton, E.W. Fischer, G. Fytas and U. Murschall, submitted to J. Chem. Phys.Google Scholar
  12. 12.
    E.A. Jordan, R.C. Ball, A.M. Donald, L.J. Fetters, R.A. Jones and J. Klein, Macromolecules, 21, 235 (1988).CrossRefGoogle Scholar
  13. 13.
    P.J. Flory, Principles of Polymer Chemistry; Cornell University Press: Ithaca, N.Y., 1953, p. 507.Google Scholar
  14. 14.
    F. Brochard, J. Jouffroy and P. Levinson, Macromolecules, 16, 1638 (1983).CrossRefGoogle Scholar
  15. 15.
    K. Binder, J. Chem. Phys., 79, 6387 (1983).CrossRefGoogle Scholar
  16. 16.
    E.J. Kramer, P.F. Green and C.J. Palmström, Polymer, 25, 473 (1984).CrossRefGoogle Scholar
  17. 17.
    H. Sillescu, Macromol. Chem. Rapid Commun., 5, 519 (1984).CrossRefGoogle Scholar
  18. 18.
    H. Sillescu, Macromol. Chem. Rapid Commun., 8, 393 (1987).CrossRefGoogle Scholar
  19. 19.
    F.C. Brochard-Wyart, R. Acad. Sci. (Paris), t.305 Serie II, 657 (1987).Google Scholar
  20. 20.
    (a) F.S. Bates, G.D. Wignall and W.C. Koehler, Phys. Rev. Lett., 55, 2425 (1985). (b) F.S. Bates and G.D. Wignall Macromolecules, 19, 934 (1986).CrossRefGoogle Scholar
  21. 21.
    R.J. Composto, E.J. Kramer and D.M. White, Macromolecules, in press.Google Scholar
  22. 22.
    A. Maconnachie, R.P. Kambour, D.M. White, S. Rostami and D.J. Walsh, Macromolecules, 17, 129 (1984).CrossRefGoogle Scholar
  23. 23.
    P.J. Mills, P.F. Green, C.J. Palmström, J.W. Mayer and E.J. Kramer, Appl. Phys. Lett., 45, 957 (1984).CrossRefGoogle Scholar
  24. 24.
    P.G. Shewmon, Diffusion in Solids, McGraw-Hill: New York, 1963.Google Scholar
  25. 25.
    J. Crank, The Mathematics of Diffusion, 2nd ed. Oxford Univ. Press: Oxford, 1975.Google Scholar
  26. 26.
    P.F. Green and E.J. Kramer, J. Mater. Res., 1, 202 (1986).CrossRefGoogle Scholar
  27. 27.
    P.F. Green and B.L. Doyle, Phys. Rev. Lett., 57, 2407 (1986).CrossRefGoogle Scholar
  28. 28.
    J. Jelenic, R.G. Kirste, R.C. Oberthur, S. Schmitt-Strecker and B.J. Schmitt, Macromol. Chemie, 185, 129 (1984).CrossRefGoogle Scholar
  29. 29.
    E.J. Kramer and H. Sillescu, to be published.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • R. J. Composto
    • 1
    • 2
  • E. J. Kramer
    • 1
  • Dwain M. White
    • 3
  1. 1.Dept. of Mater. Sci. & Eng.Cornell UniversityIthacaUSA
  2. 2.Polymer Science and EngineeringUniversity of MassachusettsAmherstUSA
  3. 3.General Electric Corp. Research and DevelopmentSchenectadyUSA

Personalised recommendations