Liver Glutamate and Glutamine Concentration in Hepatocarcinogenesis Experimental: Effect of Glutathione

  • C. Fernandez-Aguado
  • M. Minguez
  • MaJ. Miro
  • C. J. Martinez-Honduvilla
  • B. Feijoo

Summary

Among the metabolic alterations involved in thioacetamide (TAA) induced hepatocarcinogenesis, effects on ammonia metabolism have been demonstrated. This study was undertaken to investigate the response of liver glutamate and glutamine concentration after glutathione administration.

After 20 days of TAA administration, liver glutamate and glutamine concentration were 140% and 111% respectively of the control value. 2-oxoglutarate decreased to 25%. Glutamate dehydrogenase (GDH) as measured by glutamate formation and γ-glutamyl transferase (GGT) activities increased to 278% and 128%. Phosphate dependent glutaminase and glutamine synthetase decreased to 85% and 43%. Glutathione administration to the TAA treated animals showed effects on glutamate and glutamine concentration whose values decreased close to the control; 2-oxoglutarate increased. GDH activity decreased to values close to the control. No effect on glutaminase and glutamine synthetase activities was observed. The present results suggest that metabolic adaptation of liver in TAA animals treated for 20 days, lead to the synthesis of glutamate through GDH activity. Glutathione administration partially stops the enhanced content of glutamate and glutamine.

Keywords

Glutathione Glutamine Alanine Neuroblastoma Toxicology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fitzhugh, O. and Nelson, A. (1984) Science 108, 626–631.CrossRefGoogle Scholar
  2. 2.
    Trennery, P. and Waring, R. (1983) Toxicol. Lett. 19, 299–307.PubMedCrossRefGoogle Scholar
  3. 3.
    Chieli, E. and Maldaci, G. (1984) Toxicology 31, 41–52.PubMedCrossRefGoogle Scholar
  4. 4.
    Pap, A. and Varro, V. (1981) Acta Med Sci Hung 38/4, 381–384.Google Scholar
  5. 5.
    Anghileri, L., Heidreder, M., Weiler, G., Dermietzel, R. (1977) Exp. Cell. Biol. 45, 34–47.PubMedGoogle Scholar
  6. 6.
    Frederick, F. and Becker, M. (1983) INCI 71 (3), 553–558.Google Scholar
  7. 7.
    Praet, M. and Roels, H. (1984) Exp Pathol 20, 3–14.Google Scholar
  8. 8.
    Solt, D., Medline, A. and Farber, E. (1977) Ann. J. Pathol. 88, 595–609.Google Scholar
  9. 9.
    Cascales, M., Feifoo, B., Cerdan, S., Cascales, C. and Santos-Ruiz A. (1979) J. Clin. Chem. Clin. Biochem 17, 129–132.PubMedGoogle Scholar
  10. 10.
    Feijoo, B., Toledo, C., Aylagas, H. and Cascales, M. (1984) Rev. Esp. Oncologia 31, 15–20.Google Scholar
  11. 11.
    Reed D. J. and Beatty, P. W. (1980) Rev. Biochem. Toxic. 2, 213–220.Google Scholar
  12. 12.
    Ketterer, B., Coles, B. and Meyer, D. J. (1983) Envir, Hlth Perspect 49–59.Google Scholar
  13. 13.
    Mitchell, J. R., Jollow, D. J., Potter, W. Z. (1973) J. Pharmacol. Exp. Ther, 187, 211–217.PubMedGoogle Scholar
  14. 14.
    Reitzer, L., Wice, B., Keunell, D. (1979). J. Biol. Chem. 254, 2669–2676.PubMedGoogle Scholar
  15. 15.
    Lazo, P. (1981). Eur. J. Biochem. 117, 19–25.PubMedCrossRefGoogle Scholar
  16. 16.
    Szasz, G. (1969). Clin. Chem. 15, 124–136.PubMedGoogle Scholar
  17. 17.
    Watford, M., Smith, E. M. and Erbelding, E. J. (1984) Biochem. J. 224, 207–214.PubMedGoogle Scholar
  18. 18.
    Strecker, H. J. (1953) Arch. Biochem. Biophys. 46, 128–140.PubMedCrossRefGoogle Scholar
  19. 19.
    Iqbal, K. and Ottaway, J. H. (1970) Biochem. J. 119, 145–156.PubMedGoogle Scholar
  20. 20.
    Lagunas, R., McLean, P. and Greenbaum, A. L. (1970) Eur. J. Biochem. 15, 179–190.PubMedCrossRefGoogle Scholar
  21. 21.
    Pfleiderer, G. (1965), in Methods of Enzymatic Analysis (Bergmeyer, H. U. ed) pp. 394–397. Academic Press.Google Scholar
  22. 22.
    Wallenfels and Christian (1986), in Methods of Enzymatic Analysis (Bergermeyer, H. U. ed) Vol IV, 20–24. Academic Press.Google Scholar
  23. 23.
    Williamson, D. H. (1986) in Methods of Enzymatic Analysis (Bergermeyer H. U. ed) Vol IV, 341–344. Academic Press.Google Scholar
  24. 24.
    Katunuma, N., Okada, M., Nishii (1966) in Advance Enzyme Reg. 4, 317–335.CrossRefGoogle Scholar
  25. 25.
    Albrecht, J. and Hilgier, W. (1986) Acta Neurol. Scand. 73, 498–501.PubMedCrossRefGoogle Scholar
  26. 26.
    Trennery, P. N. and Waring, R. H. (1983) Toxicol. Letters, 19, 299–307.CrossRefGoogle Scholar
  27. 27.
    Tiemeier, D. C. and Milman, G. (1972) J. Biol. Chem. 247, 5722–5727.PubMedGoogle Scholar
  28. 28.
    Lacoste, L., Chandhary, K. D. and Lapointe, J. (1982) J. Neurochem. 39, 78–75.PubMedCrossRefGoogle Scholar
  29. 29.
    Karen, C. Rosenspire, Alan S. Gelbard, Arthur J. L. Cooper, Franz A. Schmid and Roberts J. (1985) Biochem. Biophys. Acta. 843, 37–48.Google Scholar
  30. 30.
    Bellomo, G., Mirabelli, F., DiMonte, D., Richelmi, P., Thor, H., Orrenius, C. and Orrenius, S. (1987). Biochemical Pharmacology 36, 1313–1320.PubMedCrossRefGoogle Scholar
  31. 31.
    Lindwell, G. and Boyer, T. D. (1987) The Journal of Biological Chemistry 262, 5151–5158.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • C. Fernandez-Aguado
    • 1
  • M. Minguez
    • 1
  • MaJ. Miro
    • 1
  • C. J. Martinez-Honduvilla
    • 1
  • B. Feijoo
    • 1
  1. 1.Dpto. Biogquimica y Biologia MolecularFacultad de Farmacia versidad ComplutenseMadridEspana

Personalised recommendations