Ischemic Heart Disease as Copper Deficiency

  • Leslie M. Klevay

Abstract

During the last 100 years, the leading causes of death in the United States have changed dramatically. 1,2 Infectious diseases were the leading killers early in the century. Deaths from heart disease did not exceed those from tuberculosis until 1910. Ischemic heart disease is the leading cause of death in the United States, 3 and has been for some time.

Keywords

Zinc Starch Ischemia Cadmium Lipase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.M. Klevay, Changing patterns of disease: some nutritional remarks, J. Am. Coll. Nutr. 3:149 (1984).PubMedGoogle Scholar
  2. 2.
    L.M. Klevay, Ischemic heart disease. A major obstacle to becoming old, Clin. Geriatric Med. 3:361 (1987).Google Scholar
  3. 3.
    Anon., “Vital Statistics of the United States,” Vol. II, Mortality, Part A. 1984; DHHS Pub. No. (PHS) 87–1122. Public Health Service, U.S. Government Printing Office, Hyattsville, Table 1–6 (1987).Google Scholar
  4. 4.
    L.B. Arey, W. Burrows, J.P. Greenhill, R.M. Hewitt, “Dorland’s Illustrated Medical Dictionary,” 23rd ed., W.B. Saunders, Philadelphia, p. 694 (1957).Google Scholar
  5. 5.
    J.T. Lei, Atherosclerosis B. Pathology of coronary artery disease, inBrandenburg: in: “Cardiology: Fundamentals and Practice,” R.O. Brandenburg, V. Fuster, E.R. Giuliani, D.C. McGoon, Year Book Medical Publishers, Inc, Chicago, Illinois, p. 972–992 (1987).Google Scholar
  6. 6.
    L.M. Klevay, The role of copper, zinc, and other chemical elements in ischemic heart disease, in: “Metabolism of Trace Metals in Man,” Vol I., O.M. Rennert, W-Y. Chan, Boca Raton, FL, CRC Press, p. 129–57 (1984).Google Scholar
  7. 7.
    L.M. Klevay, Ischemic heart disease: toward a unified theory, in: “The role of copper in lipid metabolism,” K.Y. Lei, ed., CRC Press, Inc., Boca Raton, Florida (1989) in press.Google Scholar
  8. 8.
    V. Fuster, B.A. Kottke, Atherosclerosis A. Pathogenesis, pathology, and presentation of atherosclerosis, in: “Cardiology: Fundamentals and Practice,” R.O. Brandenburg, V. Fuster, E.R. Giuliani, D.C. McGoon, Year Book Medical Publishers, Inc, Chicago, Illinois, p. 951–971, (1987).Google Scholar
  9. 9.
    T. Strasser, Coronary risk factors revisited, World Health Forum, 3:85 (1982).Google Scholar
  10. 10.
    P.N. Hopkins, R. Williams, A survey of 246 suggested coronary risk factors, Atherosclerosis40:1 (1981).PubMedCrossRefGoogle Scholar
  11. 11.
    L.M. Klevay, Coronary heart disease: the zinc/copper hypothesis. Am. J. Clin. Nutr. 28:764 (1975).PubMedGoogle Scholar
  12. 12.
    L.M. Klevay, Elements of ischemic heart disease, Perspect. Biol. Med. 20:186 (1977).PubMedGoogle Scholar
  13. 13.
    J.P. Fox, C.E. Hall, L.R. Elveback, “Epidemiology. Man and Disease,” The Macmillan Co., London, p. 10,16,36,43,44,70,267 (1970).Google Scholar
  14. 14.
    A.M. Lilienfeld, D.E. Lilienfeld, “Foundations of Epidemiology,” 2nd ed., Oxford University Press, New York, N.Y., p. 3,13,46,298 (1980).Google Scholar
  15. 15.
    B. MacMahon, T.F Pugh, J. Ipsen, “Epidemiologic Methods,” Little Brown and Co., Boston, Massachusetts, p. 3,10,20,36,37 (1960).Google Scholar
  16. 16.
    W. Insull, Jr., “Coronary Risk Handbook,” American Heart Association, New York, p. 3 (1973).Google Scholar
  17. 17.
    W.B. Kannel, Some lessons in cardiovascular epidemiology from Framingham, Am. J. Cardiol. 37:269 (1976).PubMedCrossRefGoogle Scholar
  18. 18.
    L.M. Klevay, Hypercholesterolemia in rats produced by an increase in the ratio of zinc to copper ingested, Am. J. Clin. Nutr. 26:1060 (1973).PubMedGoogle Scholar
  19. 19.
    L.M. Klevay, This Week’s Citation Classic, Current Contents, Clin. Med. 15:20 (1987).CrossRefGoogle Scholar
  20. 20.
    K.Y. Lei, Cholesterol metabolism in copper-deficient rats, Nutr. Rep. Int. 15:597 (1977).Google Scholar
  21. 21.
    K.G.D. Allen, L.M. Klevay, Cholesterolemia and cardiovascular abnormalities in rats caused by copper deficiency, Atherosclerosis29:81 (1978).PubMedCrossRefGoogle Scholar
  22. 22.
    P.W. Harvey, K.G.D. Allen, Decreased plasma lecithin: cholesterol acyltransferase activity in copper-deficient rats, J. Nutr. 111:1855 (1981).PubMedGoogle Scholar
  23. 23.
    B.L. O’Dell, Copper-zinc interaction, Effect of excess dietary zinc on copper status, Proc. N.Z. Workshop on Trace Elements in New Zealand, University of Otago, Dunedin, p. 157 (1981).Google Scholar
  24. 24.
    F.H. Nielsen, T.J. Zimmerman, T.R. Shuler, Interactions among nickel, copper, and iron in rats. Liver and plasma content of lipids and trace elements, Biol. Trace Element Res. 4:125 (1982) CrossRefGoogle Scholar
  25. 25.
    S. Reiser, R.J. Ferretti, M. Fields, J.C Smith, Jr., Role of dietary fructose in the enhancement of mortality and biochemical changes associated with copper deficiency in rats, Am. J. Clin. Nutr. 38:214 (1983).PubMedGoogle Scholar
  26. 26.
    B.N. Wu, D.M. Medeiros, K-N. Lin, B.M. Thorne, Long term effects of dietary copper and sodium upon blood pressure in the Long-Evans rat, Nutr. Res. 4:305 (1984).CrossRefGoogle Scholar
  27. 27.
    D.G. Jones, Effects of dietary copper depletion on acute and delayed inflammatory responses in mice, Res. Vet. Sci. 37:205 (1984).PubMedGoogle Scholar
  28. 28.
    M. Lefevre, C.L. Keen, B. Lőnnerdal, L.S. Hurley, B.O. Schneeman, Copper deficiency-induced hypercholesterolemia: Effects on HDL subfractions and lipoprotein receptor activity in the rat, J. Nutr. 116:1735 (1986).PubMedGoogle Scholar
  29. 29.
    P. Valsala, P.A. Kurup, Investigations on the mechanism of hypercholesterolemia observed in copper deficiency in rats, J. Biosciences12:137 (1987).CrossRefGoogle Scholar
  30. 30.
    S.M. Lynch, J.J. Strain, Effects of dietary copper deficiency on hepatic antioxidant enzymes in male and female rats, Nutr. Rep. Int. 37:1127 (1988).Google Scholar
  31. 31.
    S.I. Koo, C.C. Lee, J.E. Norvell, Effect of copper deficiency on the lymphatic absorption of cholesterol, plasma chylomicron clearance, and post heparin lipase activities, Proc. Soc. Exp. Biol. Med. 188:410 (1988).PubMedGoogle Scholar
  32. 32.
    S.C Cunnane, K.R. McAdoo, M. Karmazyn, Copper intake affects rat heart performance during ischemia-reperfusion: Possible relation to altered lipid and fatty acid metabolism, Prostaglandins Leukotrienes and Essential Fatty Acids34:61 (1988).Google Scholar
  33. 33.
    L.M. Klevay, L. Inman, L.K. Johnson, M. Lawler, J.R. Mahalko, D.B. Milne, H.C Lukaski, W. Bolonchuk, H.H. Sandstead, Increased cholesterol in plasma in a young man during experimental copper depletion, Metabolism33:1112 (1984).Google Scholar
  34. 34.
    S. Reiser, A. Powell, C-Y. Yang, J.J. Canary, Effect of copper intake on blood cholesterol and its lipoprotein distribution in men, Nutr. Rep. Int. 36:641 (1987).Google Scholar
  35. 35.
    L.M. Klevay, The role of copper and zinc in cholesterol metabolism, in: “Advances in Nutritional Research,” Vol 1, H.H. Draper, ed., Plenum Publishing Corp., New York, p. 227 (1977).Google Scholar
  36. 36.
    L.M. Klevay, The influence of copper and zinc on the occurrence of ischemic heart disease, J. Environ. Pathol. Toxicol. 4:281 (1980).PubMedGoogle Scholar
  37. 37.
    L.M. Klevay, Interactions of copper and zinc in cardiovascular disease, Ann. N.Y. Acad. Sci. 355:140 (1980).PubMedCrossRefGoogle Scholar
  38. 38.
    L.M. Klevay, Ischemic heart disease: Updating the zinc/copper hypothesis, in: “Nutrition and Heart Disease,” H.K. Naito, ed., S.P. Medical & Scientific Books, New York, p. 61 (1982).Google Scholar
  39. 39.
    L.M. Klevay, Copper and ischemic heart disease, Biol. Trace Element Res. 5:245 (1983).CrossRefGoogle Scholar
  40. 40.
    L.M. Klevay, Dietary copper: A powerful determinant of cholesterolemia, Med. Hypoth. 24:111 (1987).CrossRefGoogle Scholar
  41. 41.
    H.L. Keil, V.E. Nelson, The rôle of copper in carbohydrate metabolism, J. Biol. Chem. 106:343 (1934).Google Scholar
  42. 42.
    A.M. Cohen, A. Teitelbaum, E. Miller, V. Ben-Tor, R. Hirt, M. Fields, Effect of copper on carbohydrate metabolism in rats, Isr. J. Med. Sci. 18:840 (1982).PubMedGoogle Scholar
  43. 43.
    C.A. Hassel, J.A. Marchello, K.Y. Lei, Impaired glucose tolerance in copper-deficient rats, J. Nutr. 113:1081 (1983).PubMedGoogle Scholar
  44. 44.
    L.M. Klevay, W.K. Canfield, S.K. Gallagher, L.K. Henriksen, H.C. Lukaski, W. Bolonchuk, L.K. Johnson, D.B. Milne, H.H. Sandstead, Decreased glucose tolerance in two men during experimental copper depletion, Nutr. Rep. Int. 33:371 (1986).Google Scholar
  45. 45.
    L.M. Klevay, K.E. Viestenz, Abnormal electrocardiograms in rats deficient in copper, Am. J. Physiol. 240:H185 (1981).PubMedGoogle Scholar
  46. 46.
    K.E. Viestenz, L.M. Klevay, A randomized trial of copper therapy in rats with electrocardiographic abnormalities due to copper deficiency, Am. J. Clin. Nutr. 35:258 (1982).PubMedGoogle Scholar
  47. 47.
    S. Reiser, J.C. Smith, Jr., W. Mertz, J.T. Holbrook, D.J. Scholfield, A.S. Powell, W.K. Canfield, J.J. Canary, Indices of copper status in humans consuming a typical American diet containing either fructose or starch, Am. J. Clin. Nutr. 42:242 (1985).PubMedGoogle Scholar
  48. 48.
    M. Fields, C. Lewis, D.J. Scholfield, A.S. Powell, A.J. Rose, S. Reiser, J.C. Smith, Female rats are protected against the fructose induced mortality of copper deficiency, Proc. Soc. Exp. Biol. Med. 183:145 (1986).PubMedGoogle Scholar
  49. 49.
    L.M. Klevay, Hypertension in rats due to copper deficiency, Nutr. Rep. Int. 35:999 (1987).Google Scholar
  50. 50.
    D.M. Medeiros, Hypertension in the Wistar-Kyoto rat as a result of post-weaning copper restriction, Nutr. Res. 7:231 (1987).CrossRefGoogle Scholar
  51. 51.
    H.C. Lukaski, L.M. Klevay, D.B. Milne, Effects of dietary copper on human autonomic cardiovascular function, Eur. J. App. Physiol. 58:74 (1988).CrossRefGoogle Scholar
  52. 52.
    C.A. Owen, Jr., “Physiological Aspects of Copper,” Noyes Publications, Park Ridge, NJ, p. 25 (1982).Google Scholar
  53. 53.
    W.B, Kannel, W.P. Castelli, T. Gordon, Cholesterol in the prediction of atherosclerotic disease, Ann. Intern. Med. 90:85 (1979).PubMedGoogle Scholar
  54. 54.
    L.M. Klevay, Hyperuricemia in rats due to copper deficiency, Nutr. Rep. Int. 22:617 (1980).Google Scholar
  55. 55.
    J. Waisman, P.A. Cancilla, W.F. Coulson, Cardiovascular studies on copper-deficient swine XIII. The effect of chronic copper deficiency on the cardiovascular system of miniature pigs, Lab. Invest. 21:548 (1969).PubMedGoogle Scholar
  56. 56.
    W.F. Coulson, W.H. Carnes, Cardiovascular studies on copper-deficient swine. V. The histogensis of the coronary artery lesions, Am. J. Pathol. 43:945 (1963).PubMedGoogle Scholar
  57. 57.
    L.M. Klevay, E.S. Halas, Effect of restraint and copper deficiency on blood pressure and mortality of adult rats, FASEB J. 3:A1062 (1989).Google Scholar
  58. 58.
    Th.G. Aalbers, “Cardiovascular Diseases and Trace Elements,” Drukkerij Blok En Zonen, Dieren, Netherlands, p. 206 (1984).Google Scholar
  59. 59.
    B. Chipperfield, J.R. Chipperfield, Differences in metal content of the heart muscle in death from ischemic heart disease, Am. Heart J. 95:732 (1978).PubMedCrossRefGoogle Scholar
  60. 60.
    L.L, Mitchell, K.G.D. Allen, M.M. Mathias, Copper deficiency depresses rat aortae superoxide dismutase activity and prostacyclin synthesis, Prostaglandins35:977 (1988).Google Scholar
  61. 61.
    B. Radhakrishnamurthy, H. Ruiz, E.R. Dalferes, Jr., L.M. Klevay, G.S. Berenson, Composition of proteoglycans in the aortas of copper-deficient rats, Proc. Soc. Exp. Biol. Med. 190:98 (1989).PubMedGoogle Scholar
  62. 62.
    Anon., Recommended Dietary Allowances, Food and Nutrition Board, National Research Council, 9th ed., National Academy of Sciences, Washington, D.C., p. 151 (1980).Google Scholar
  63. 63.
    P.B. Moser, R.D. Reynolds, S. Acharya, M.P. Howard, M.B. Andon, S.A. Lewis, Copper, iron, zinc, and selenium dietary intake and status of Nepalese lactating women and their breast-fed infants, Am. J. Clin. Nutr. 47:729 (1988).PubMedGoogle Scholar
  64. 64.
    I.F. Rivai, S, Suzuki, H. Koyama, K. Hyodo, N. Djuangsih, 0. Soemarwoto, Copper content of foods of Java Island and estimation of daily copper intake, Bull. Environ. Contam. Toxicol. 41:114 (1988).PubMedCrossRefGoogle Scholar
  65. 65.
    S.D. Soman, V.K. Panday, K.T. Joseph, S.J. Raut, Daily intake of some major and trace elements, Health Phys. 17:35 (1969).PubMedCrossRefGoogle Scholar
  66. 66.
    L.M. Klevay, Dietary requirements for trace elements in humans, “Trace Element Analytical Chemistry in Medicine and Biology,” Vol. 4, P. Bratter, P. Schramel, eds., deGruyter, W., Berlin, p. 43 (1987).Google Scholar
  67. 67.
    L.M. Klevay, Clofibrate hypocholesterolemia associated with increased hepatic copper, Drug Nutr. Interact. 2:131 (1983).Google Scholar
  68. 68.
    L.M. Klevay, Cholesterotropic and cuprotropic chemicals, Proc. 5th International Symposium on Trace Element Metabolism in Man and Animals, C.F. Mills, I. Bremner, J.K. Chesters, eds., Commonwealth Agricultural Bureaux, Farnham Royal, U.K., p. 180 (1985).Google Scholar
  69. 69.
    L.M. Klevay, Aspirin hypocholesterolemia associated with increased microsomal copper in liver, Nutr. Res. 6:1281 (1986).CrossRefGoogle Scholar
  70. 70.
    L.M. Klevay, Dietary cholesterol lowers liver copper in rabbits, Biol. Trace Element Res. 16:51 (1988).CrossRefGoogle Scholar
  71. 71.
    L.M. Klevay, Beer increases the longevity of rats fed a diet deficient in copper, Proc. 6th International Symposium on Trace Elements in Man and Animals, L.S. Hurley, C.L. Keen, B. Lonnerdal, R.B. Rucker, eds., in press.Google Scholar
  72. 72.
    L.M. Klevay, An association between the amount of fat and the ratio of zinc to copper in 71 foods: inferences about the epidemiology of coronary heart disease, Nutr. Rep. Int. 9:393 (1974).Google Scholar
  73. 73.
    L.M. Klevay, Coronary heart disease and dietary fiber, Am. J. Clin. Nutr. 27:1202 (1974).PubMedGoogle Scholar
  74. 74.
    L.M. Klevay, J. Forbush, Copper metabolism and the epidemiology of coronary heart disease, Nutr. Rep. Int. 14:221 (1976).Google Scholar
  75. 75.
    L.M. Klevay, Cholesterol reductions: safety, and other concerns, Ann. Int. Med. 107:421 (1987).Google Scholar
  76. 76.
    L.M. Klevay, Cost-effectiveness of antihyperlipemic therapy, JAMA259:1811 (1988).PubMedCrossRefGoogle Scholar
  77. 77.
    M.F. Oliver, Reducing cholesterol does not reduce mortality, J. Am. Coll. Cardiol. 12:814 (1989).CrossRefGoogle Scholar
  78. 78.
    A.B. Hill, The environment and disease: association or causation? Proc. Royal Soc. Med. 58:295 (1965).Google Scholar
  79. 79.
    I. Krishan, B.A. Kottke, The risk-factor concept: cause and prevention of coronary heart disease, in: “Cardiology: Fundamentals and Practice,” R.O. Brandenburg, V. Fuster, E.R. Giuliani, D.C. McGoon, Year Book Medical Publishers, Inc, Chicago, Illinois, p. 993–1035, (1987).Google Scholar
  80. 80.
    L.M. Klevay, An increase in glycosylated hemoglobin in rats deficient in copper, Nutr. Rep. Int. 26:329 (1982).Google Scholar
  81. 81.
    L.M. Klevay, Atrial thrombosis, abnormal electrocardiograms and sudden death in mice due to copper deficiency, Atherosclerosis54:213 (1985).PubMedCrossRefGoogle Scholar
  82. 82.
    D. Steinberg, S. Parthasarathy, T.E. Carew, J.C. Khoo, J.L. Witztum, Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenesity, New Engl. J. Med. 320:915 (1989).PubMedCrossRefGoogle Scholar
  83. 83.
    P.S. Balevska, E.M. Russanov, T.A. Kassabova, Studies on lipid peroxidation in rat liver by copper deficiency, Int. J. Biochem. 13:489 (1981).PubMedCrossRefGoogle Scholar
  84. 84.
    M. Fields, R.J. Ferretti, J.C. Smith, S. Reiser, Interaction between dietary carbohydrate and copper nutriture on lipid peroxidation in rat tissues, Biol. Trace Element Res. 6:379 (1984).CrossRefGoogle Scholar
  85. 85.
    J.T. Saari, Chronic treatment with dimethyl sulfoxide protects against cardiovascular defects of copper deficiency, Proc. Soc. Exp. Biol. Med. 190:121 (1989).PubMedGoogle Scholar
  86. 86.
    CS. Kim. C.H. Hill, The interrelationship of dietary copper and amine oxidase in the formation of elastin, Biochem. Biophys. Res. Commun. 24:395 (1966).PubMedCrossRefGoogle Scholar
  87. 87.
    D.J. Prockop, K.I. Kivirikko, L. Tuderman, N.A. Guzman, The biosynthesis of collagen and its disorders, New Engl. J. Med. 301:13 (1979).PubMedCrossRefGoogle Scholar
  88. 88.
    W.H. Carnes, Copper and connective tissue metabolism, Int. Rev. Connect. Tissue Res. 4:197 (1968).PubMedGoogle Scholar
  89. 89.
    G.S. Shields, W.F. Coulson, D.A. Kimball, W.H. Carnes, CE. Cartwright, M.M. Wintrobe, Studies on copper metabolism. XXXII. Cardiovascular lesions in copper-deficient swine, Am. J. Pathol. 41:603 (1962).PubMedGoogle Scholar
  90. 90.
    W.H. Carnes, W.F. Coulson, A.M. Albino, Intimal lesions in muscular arteries of young copper-deficient swine, Ann. N.Y. Acad. Sci. 127:800 (1965).PubMedCrossRefGoogle Scholar
  91. 91.
    W. Opsahl, H. Zeronian, M. Ellison, D. Lewis, R.B. Rucker, R.S. Riggins, Role of copper in collagen cross-linking and its influence on selected mechanical properties of chick bone and tendon, J. Nutr. 112:708 (1982).PubMedGoogle Scholar
  92. 92.
    B.W.C Lau, L.M. Klevay, Plasma lecithin: cholesterol acyltransferase in copper deficient rats, J. Nutr. 111:1698 (1981).PubMedGoogle Scholar
  93. 93.
    B.W.C. Lau, L.M. Klevay, Postheparin plasma lipoprotein lipase in copper-deficient rats, J. Nutr. 112:928 (1982).PubMedGoogle Scholar
  94. 94.
    N.Y Yount, D.J. McNamara, A.A. Al-Othman, K.Y. Lei, Effect of copper deficiency on rat hepatic 3-hydroxy-3 methyl-glutaryl-coenzyme A reductase, FASEB J. 3:A357 (1989).Google Scholar
  95. 95.
    E.R. Barnhart, “Physicians Desk Reference,” 43rd ed., Medical Economics Company, Inc., Oradell, NJ, p. 1362 (1989).Google Scholar
  96. 96.
    W.E. Cornatzer, J.A. Haning, L.M. Klevay, The effect of copper deficiency on heart microsomal phosphatidylcholine biosynthesis and concentration, Int. J. Biochem. 18:1083 (1986).PubMedCrossRefGoogle Scholar
  97. 97.
    J.M. McCord, Oxygen-derived free radicals in postischemic tissue injury, New Engl. J. Med. 312:159 (1985).Google Scholar
  98. 98.
    P.A. Southorn, G. Powis, Free radicals in medicine. II. Involvement in human disease, Mayo Clin. Proc. 63:390 (1988).PubMedGoogle Scholar
  99. 99.
    CA. Owen, Jr., “Biochemical Aspects of Copper,” Noyes Publications, Park Ridge, NJ, p. 78, 120 (1982).Google Scholar
  100. 100.
    P.A. Southorn, G. Powis, Free radicals in medicine. I. Chemical nature and biologic reactions, Mayo Clin. Proc. 63:381 (1988).PubMedGoogle Scholar
  101. 101.
    D.I. Paynter, R.J. Moir, E.J. Underwood, Changes in activity of the Cu-Zn superoxide dismutase enzyme in tissues of the rat with changes in dietary copper, J. Nutr. 109:1570 (1979).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Leslie M. Klevay
    • 1
  1. 1.USDA, ARSGrand Forks Human Nutrition Research CenterGrand ForksUSA

Personalised recommendations