Skip to main content

Role of the GABA—Benzodiazepine Receptor Complex in Stress

In Vivo Approaches and Potential Relevance to Childhood Psychopathology

  • Chapter

Abstract

An appreciation of the structure and function of the GABAA-benzodiazepine receptor-chloride ionophore complex is necessary in order to understand the therapeutic mechanism of action of several major classes of anxiolytic and sedative-hypnotic drugs. The chapter provides the background necessary to appreciate these structural and functional considerations. Studies reporting that genetic differences in the density of central benzodiazepine receptors exist between strains of animals differing in the traits of emotionality and fearfulness are presented. The demonstration, isolation, and synthesis of several inverse agonists have spurred theoretical speculation about the existence of endogenous ligands for the benzodiazepine receptor, as well as a role for this receptor in normal and pathological responses to stress. This chapter selectively reviews studies describing the plasticity of the benzodiazepine-GABA receptor complex in response to environmental stress. Several of these stress paradigms were naturalistic ones showing that the application of specific stressors during the early stages of an animal’s development results in enduring changes in benzodiazepine receptor sensitivity and behavior in the adult animal. There are also data showing that the benzodiazepine receptor is involved in the mediation and modulation of aggressive behavior. The potential relevance of these observations to child psychiatry is obvious. Evidence implicating peripheral hormones in the regulation of central benzodiazepine receptor sensitivity in response to stress is presented. A stressinduced modification of the complex would suggest that adaptive responses may be accompanied by changes in γ-aminobutyric acid (GABA)ergic transmission that are mediated postsynaptically; some of these changes appear to occur rapidly (i.e., within 1 min of exposure to the stress) and may reflect post-translational modification of the complex. Most of the data on the benzodiazepine receptor and its modification by environmental stress were obtained with classical in vitro techniques, especially filtration-binding assays. These techniques are performed under conditions that are not physiological with respect to temperature and salt concentrations; they disrupt the local neuronal circuitry involved in the regulation of benzodiazepine receptor sensitivity in the intact animal. Therefore, an in vivo approach to the measurement of benzodiazepine receptors in intact animals that avoids the artifacts associated with in vitro and ex vivo techniques has been developed. The method involves the intravenous injection of a tracer quantity of the radiolabeled antagonist Ro 15-1788. Using this in vivo approach, a relationship was shown between benzodiazepine receptor occupancy and the pharmacological potencies of several benzodiazepines. The application of this method to studying the effects of environmental stress and the mechanism of stress-induced modifications of binding are also reviewed.

Keywords

  • Inverse Agonist
  • Supramolecular Complex
  • GABAergic Transmission
  • Diazepam Binding
  • Flunitrazepam Binding

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4613-0525-5_4
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-1-4613-0525-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Trullas R, Havoundjian H, Zamir N, et al : Environmentally-induced modification of the benzodiazepine/GABA receptor coupled chloride ionophore. Psychopharmacology 91:384–390, 1987

    CrossRef  PubMed  CAS  Google Scholar 

  2. Goeders NE, Kuhar MJ : Benzodiazepine receptor binding in vivo with [3H]Rol5-1788. Life Sci 37:345–355, 1985

    CrossRef  PubMed  CAS  Google Scholar 

  3. Miller LG, Greenblatt DJ, Paul SM, et al : Benzodiazepine receptor occupancy in vivo: Correlation with brain concentrations and pharmacodynamic actions. J Pharmacol Exp Ther 240:516–522, 1987

    PubMed  CAS  Google Scholar 

  4. Haefely W, Pole P: Physiology of GABA enhancement by benzodiazepines and barbiturates, in Olsen RW Venter JC (eds): Benzodiazepine/GABA Receptors and Chloride Channels: Structural and Functional Properties. New York, Alan R. Liss, 1986, p 97

    Google Scholar 

  5. Olsen RW : GABA-benzodiazepine barbiturate receptor interactions. J Neurochem 37:1–13, 1981

    CrossRef  PubMed  CAS  Google Scholar 

  6. Braestrup C, Nielsen M, Olsen CE : Urinary and brain beta-carboline-3-carboxylates as potent inhibitors of brain benzodiazepine receptors. Proc Natl Acad Sci USA 77:2288–2292, 1980

    CrossRef  PubMed  CAS  Google Scholar 

  7. Ninan PT, Insel TR, Cohen RM, et al : Benzodiazepine receptor mediated experimental anxiety in primates. Science 218:1332–1334, 1982

    CrossRef  PubMed  CAS  Google Scholar 

  8. Dorow R, Horowski R, Paschelke G, et al : Severe anxiety induced by FG 7142, a (β-carboline ligand for benzodiazepine receptors. Lancet 9:98–99, 1983

    CrossRef  Google Scholar 

  9. Mohler H, Richards JG : Agonist and antagonist benzodiazepine receptor interaction in vitro. Nature (Lond) 294:763–765, 1981

    CrossRef  CAS  Google Scholar 

  10. Mohler H, Okada T : Benzodiazepine receptor: Demonstration in the central nervous system. Science 198:849–851, 1977

    CrossRef  PubMed  CAS  Google Scholar 

  11. Squires RF, Braestrup C : Benzodiazepine receptors in rat brain. Nature (Lond) 266:732–734, 1977

    CrossRef  CAS  Google Scholar 

  12. Tallman JF, Thomas JW, Gallager DW : GABAergic modulation of benzodiazepine binding site sensitivity. Nature (Lond) 274:383–385, 1978

    CrossRef  CAS  Google Scholar 

  13. Study RE, Barker JL : Diazepam and (—) pentobarbital: Fluctuation analysis reveals different mechanisms for potentiation of GABA responses in cultured central neurons. Brain Res 268:171–176, 1981

    Google Scholar 

  14. Braestrup C, Nielsen M : GABA reduces binding of [3H]-methyl-(β-carboline-3-carboxylate to brain benzodiazepine receptors. Nature (Lond) 294:472–474, 1981

    CrossRef  CAS  Google Scholar 

  15. Borea PA, Supavilai P, Karobath M : Differential modulation of etazolate or pentobarbital enhanced [3H]-muscimol binding by benzodiazepine agonists and inverse agonists. Brain Res 280:383–386, 1983

    CrossRef  PubMed  CAS  Google Scholar 

  16. Barker JL, Owen DG : Electrophysiological pharmacology of GABA and diazepam in cultured CNS neurons, in Olsen RW Venter JC(eds): Benzodiazepine/GABA Receptors and Chloride Channels: Structural and Functional Properties. New York, Alan R. Liss, 1986, p 135

    Google Scholar 

  17. Honore T, Nielsen M, Braestrup C : Barbiturate shift as a tool for determination of efficacy of benzodiazepine-receptor ligands. Eur J Pharmacol 100:103–107, 1984

    CrossRef  PubMed  CAS  Google Scholar 

  18. Wong EHF, Snowman AM, Leeb-Lundberg LMF : Bariturates allosterically inhibit GABA antagonist and benzodiazepine inverse agonist binding. Eur J Pharmacol 102:205–212, 1984

    CrossRef  PubMed  CAS  Google Scholar 

  19. Skolnick P, Paul SM, Barker JL : Pentobarbital potentiates GABA-enhanced [3H]-diazepam binding to benzodiazepine receptors. Eur J Pharmacol 65:125–127, 1980

    CrossRef  PubMed  CAS  Google Scholar 

  20. Schofield PR, Darlison MG, Fujita N, et al : Sequence and functional expression of the of GABAA receptor shows a ligand-gated receptor super-family. Nature (Lond) 328:221–227, 1987

    CrossRef  CAS  Google Scholar 

  21. Pritchett DB, Luddens H, Seeburg PH: Type I and type II GABAA-benzodiazepine receptors produced in transfected cells. Science 245:1389–1392, 1989

    CrossRef  PubMed  CAS  Google Scholar 

  22. Havoundjian H, Paul SM, Skolnick P : Rapid, stress-induced modification of the benzodiazepine receptorcoupled chloride ionophore. Brain Res 375:401–406, 1986

    CrossRef  PubMed  CAS  Google Scholar 

  23. Havoundjian H, Paul SM, Skolnick P : Acute, stress-induced changes in the benzodiazepine/GABA receptor complex are confined to the chloride ionophore. J Pharmacol Exp Ther 237:787–793, 1986

    PubMed  CAS  Google Scholar 

  24. Schwartz RD, Wess MJ, Labarca R, et al : Acute stress enhances the activity of the GABA-gated chloride ion channel in brain. Brain Res 411:151–155, 1987

    CrossRef  PubMed  CAS  Google Scholar 

  25. Robertson HA, Martin IL, Candy JM : Differences in benzodiazepine receptor binding in Maudsley reactive and Maudsley non-reactive rats. Eur J Pharmacol 50:455–457, 1978

    CrossRef  PubMed  CAS  Google Scholar 

  26. Tamborska E, Insel T, Marangos PH : “Peripheral” and “central” type benzodiazepine receptors in Maudsley rats. Eur J Pharmacol 126:281–287, 1986

    CrossRef  PubMed  CAS  Google Scholar 

  27. Robertson HA: Benzodiazepine receptors in “emotional” and “non-emotional” mice: Comparison of four strains. Eur J Pharmacol 56:163–166, 1979

    CrossRef  PubMed  CAS  Google Scholar 

  28. Lippa AS, Klepner CA, Yunger L, et al : Relationship between benzodiazepine receptors and experimental anxiety in rats. Pharmacol Biochem Behav 9:853–856, 1978

    CrossRef  PubMed  CAS  Google Scholar 

  29. Lane JD, Crenshaw CM, Guerin GF, et al : Changes in biogenic amine and benzodiazepine receptors correlated with conditioned emotional response and its reversal by diazepam. Eur J Pharmacol 83:183–190, 1982

    CrossRef  PubMed  CAS  Google Scholar 

  30. Braestrup C, Nielsen M, Nielsen E, et al : Benzodiazepine receptors in brain as affected by different experimental stresses: The changes are small and not unidirectional. Psychopharmacology 65:273–277, 1979

    CrossRef  PubMed  CAS  Google Scholar 

  31. Essman M, Valzelli L : Brain benzodiazepine receptor changes in the isolated aggressive mouse. Pharmacol Res Commun 13:665–671, 1981

    CrossRef  PubMed  CAS  Google Scholar 

  32. Petkov VV, Yanev S : Brain benzodiazepine receptor changes in rats with isolation syndrome. Pharmacol Res Commun 14:739–744, 1982

    CrossRef  PubMed  CAS  Google Scholar 

  33. Fride E, Dan Y, Gavish M, et al : Prenatal stress impairs maternal behavior in a conflict situation and reduces hippocampal benzodiazepine receptors. Life Sci 36:2103–2109, 1985

    CrossRef  PubMed  CAS  Google Scholar 

  34. Bodnoff SR, Suranyi-Cadotte B, Quirion R : Postnatal handling reduces novelty-induced fear and increases [3H]flunitrazepam binding in rat brain. Eur J Pharmacol 144:105–107, 1987

    CrossRef  PubMed  CAS  Google Scholar 

  35. Soubrie P, Thiebot M, Jobert A, et al : Decreased convulsant potency of picrotoxin and pentetrazol and enhanced [3H]flunitrazepam cortical binding following stressful manipulations in rats. Brain Res 189:505–517, 1980

    CrossRef  PubMed  CAS  Google Scholar 

  36. LeFur A, Guilloux F, Mitrani N, et al : Relationship between plasma corticosteroids and benzodiazepines in stress. J Pharmacol Exp Ther 211:305–308, 1979

    CAS  Google Scholar 

  37. Skerritt JH, Trisdikoon P, Johnston GAR : Increased GABA binding in mouse brain following acute swim stress. Brain Res 215:398–403, 1981

    CrossRef  PubMed  CAS  Google Scholar 

  38. Medina, J, Novas M, Wolfman C, et al : Benzodiazepine receptors in rat cerebral cortex and hippocampus undergo rapid and reversible changes after acute stress. Neuroscience 9:331–335, 1983

    CrossRef  PubMed  CAS  Google Scholar 

  39. Drugan RC, Maier SF, Skolnick P, et al : An anxiogenic benzodiazepine receptor ligand induces learned helplessness. Eur J Pharmacol 113:453–457, 1985

    CrossRef  PubMed  CAS  Google Scholar 

  40. Drugan RC, Ryan SM, Minor TR, et al : Librium prevents the analgesia and shuttlebox escape deficit typically observed following inescapable shock. Pharmacol Biochem Behav 21:749–754, 1984

    CrossRef  PubMed  CAS  Google Scholar 

  41. DeSouza E, Goeders NE, Kuhar MJ : Benzodiazepine receptors in rat brain are altered by adrenalectomy. Brain Res 381:176–181, 1986

    CrossRef  CAS  Google Scholar 

  42. Goeders NE, DeSouza EB, Kuhar MJ : Benzodiazepine receptor GABA ratios: Regional differences in rat brain and modulation by adrenalectomy. Eur J Pharmacol 129:363–366, 1986

    CrossRef  PubMed  CAS  Google Scholar 

  43. Majewska MD, Harrison NL, Schwartz RD, et al : Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 232:1004–1007, 1986

    CrossRef  PubMed  CAS  Google Scholar 

  44. Morrow AL, Suzdak PD, Paul SM : Steroid hormone metabolites potentiate GABA receptor-mediated chloride ion flux with nanomolar potency. Eur J Pharmacol 142:483–485, 1987

    CrossRef  PubMed  CAS  Google Scholar 

  45. Schambelan M, Biglieri EG : Deoxycorticosterone production and regulation in man. J Clin Endocrinol Metab 34:695–703, 1972

    CrossRef  PubMed  CAS  Google Scholar 

  46. Lai H, Kumar B, Forster MJ : Enhancement of learning and memory in mice by a benzodiazepine antagonist. FASEB J 2()11):2707–2711, 1988

    Google Scholar 

  47. Kumar BA, Forster MJ, Lai H : CGS 8216, a benzodiazepine receptor antagonist, enhances learning and memory in mice. Brain Res 460()1): 195–198, 1988

    CrossRef  PubMed  CAS  Google Scholar 

  48. Novas ML, Wolfman C, Medina JH, et al : Proconvulsant and “anxiogenic” effects of n-butyl beta carboline-3-carboxylate, an endogenous benzodiazepine binding inhibitor from brain. Pharmacol Biochem Behav 30()2):331–336, 1988

    CrossRef  PubMed  CAS  Google Scholar 

  49. De Bias AL, Sangameswaran L : Demonstration and purification of an endogenous benzodiazepine from the mammalian brain with a monoclonal antibody to benzodiazepines. Life Sci 39()21): 1927–1936, 1986

    CrossRef  Google Scholar 

  50. Sangameswaran L, Fales HM, Friedrich P, et al : Purification of a benzodiazepine from bovine brain and detection of benzodiazepine-like immunoreactivity in human brain. Proc Natl Acad Sci (USA) 83()23): 9236–9240, 1986

    CrossRef  CAS  Google Scholar 

  51. Wildmann J, Ranalder U : Presence of lorazepam in the blood plasma of drug free rats. Life Sci 43 (15): 1257–1260, 1988

    CrossRef  CAS  Google Scholar 

  52. Wildman J : Increase of natural benzodiazepines in wheat and potato during germination. Biochem Biophys Res Commun 157()3): 1436–1443, 1988

    CrossRef  Google Scholar 

  53. Deutsch SI, Miller LG, Weizman R, et al : Characterization of specific [3H]Rol5-1788 binding in vivo. Psychopharm Bull 23:469–472, 1987

    CAS  Google Scholar 

  54. Miller LG, Thompson ML, Greenblatt DJ, et al : Rapid increase in brain benzodiazepine receptor binding following defeat stress in mice. Brain Res 414:395–400, 1987

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1990 Plenum Publishing Corporation

About this chapter

Cite this chapter

Deutsch, S.I., Weizman, A., Weizman, R., Vocci, F.J., Kook, K.A. (1990). Role of the GABA—Benzodiazepine Receptor Complex in Stress. In: Deutsch, S.I., Weizman, A., Weizman, R. (eds) Application of Basic Neuroscience to Child Psychiatry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0525-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0525-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7849-8

  • Online ISBN: 978-1-4613-0525-5

  • eBook Packages: Springer Book Archive