Novel Drug Development in the Developmental Disorders

  • Frank J. VocciJr
  • Stephen I. Deutsch


This chapter highlights the diagnostic concepts of developmental disorders, summarizes salient research activities directed toward understanding deficits in autism from the neuropsychological, neurophysiological, and neurobiological perspectives, develops a framework for drug development aimed at therapeutic intervention in these disorders, and discusses prototypic agents that may be of value.


Developmental Disorder Autistic Child Pervasive Developmental Disorder Rapid Automatize Naming Autistic Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    American Psychiatric Association : Diagnostic and Statistical Manual of Mental Disorders, ed 3, revised. Washington, D.C., American Psychiatric Association, 1987Google Scholar
  2. 2.
    Rutter M, Schopler E : Autism and pervasive developmental disorders: Concepts and diagnostic issues. J Autism Dev Disord 17; 159–187, 1987PubMedCrossRefGoogle Scholar
  3. 3.
    Dawson G : Lateralized brain function in autism: Evidence from the Halstead-Reitan neuropsychological battery. J Autism Dev Disord 13:369–386, 1983CrossRefGoogle Scholar
  4. 4.
    Rutter M : Cognitive deficits in the pathogenesis of autism. J Child Psychol Psychiatry 24:513–531, 1983PubMedCrossRefGoogle Scholar
  5. 5.
    Hobson RP : The autistic child’s recognition of age-related features of people, animals, and things. Br J Dev Psychol 4:343–352, 1983CrossRefGoogle Scholar
  6. 6.
    James AL, Barry RJ : A review of psychophysiology in early onset psychosis. Schizophr Bull 6:506–525, 1980PubMedGoogle Scholar
  7. 7.
    Hutt C, Hutt SJ, Lee D, et al : Arousal and childhood psychosis. Nature (Lond) 204:908–909, 1964CrossRefGoogle Scholar
  8. 8.
    Kolvin I, Ounsted C, Roth M : Cerebral dysfunction and childhood psychosis. Br J Psychiatry 118;407–414, 1971PubMedCrossRefGoogle Scholar
  9. 9.
    Creak EM, Pampiglione G : Clinical and EEG studies on a group of 35 psychotic children. Dev Med Child Neurol 11:218–227, 1969PubMedCrossRefGoogle Scholar
  10. 10.
    Kinsboume M: Do repetitive movement patterns in children and animals serve a de-arousal function? J Dev Behav Pediatr 1:39–42, 1980Google Scholar
  11. 11.
    Hermelin B, O’Connor N : Psychological Experiments with Autistic Children. Oxford, Pergamon, 1970Google Scholar
  12. 12.
    Skoff BF, Mirsky AF, Turner D : Prolonged brainstem transmission time in autism. Psychiatry Res 2:157–166, 1980PubMedCrossRefGoogle Scholar
  13. 13.
    Tanguay PE, Edward RE, Buchwald J, et al : Auditory brainstem evoked responses in autistic children. Arch Gen Psychiatry 39:174–180, 1972CrossRefGoogle Scholar
  14. 14.
    Student M, Sohmer H : Evidence from auditory nerve and brainstem evoked responses for an organic brain lesion in children with autistic traits. J Aut Child Schizophr 8:13–20, 1978CrossRefGoogle Scholar
  15. 15.
    Novick B, Kutzberg D, Vaughn HG : An electrophysiological indication of defective information storage in childhood autism. Psychiatry Res 1:101–108, 1979PubMedCrossRefGoogle Scholar
  16. 16.
    Damasio AR, Maurer RG : A neurological model for childhood autism. Arch Neurol 35:777–786, 1978PubMedCrossRefGoogle Scholar
  17. 17.
    Campbell M, Anderson LT, Meier DD et al : A comparison of haloperidol and behavior therapy and their interaction in autistic children. J Am Acad Child Psychiatry 17:640–655, 1978PubMedCrossRefGoogle Scholar
  18. 18.
    Campbell M, Anderson LT, Small AM, et al : The effects of haloperidol on learning and behavior in autistic children. J Aut Dev Disord 12:167–175, 1982CrossRefGoogle Scholar
  19. 19.
    Anderson LT, Campbell M, Grega DM, et al : Haloperidol in infantile autism: Effects on learning and behavioral symptoms. Am J Psychiatry 141:1195–1202, 1984PubMedGoogle Scholar
  20. 20.
    Deutsch SI, Campbell M : Relative affinities for different classes of neurotransmitter receptors predict neuroleptic efficacy in infantile autism: A hypothesis. Neuropsychobiology 15:160–164, 1986PubMedCrossRefGoogle Scholar
  21. 21.
    Stoff JC, Kebabian JW : Two dopamine receptors: Biochemistry, physiology and pharmacology. Life Sci 35:2281–2296, 1984CrossRefGoogle Scholar
  22. 22.
    Walters JW, Bergstrom DA, Carlson JH, et al : Dopamine receptor activation required for postsynaptic expression of D2 agonist effects. Science 236:719–722, 1987PubMedCrossRefGoogle Scholar
  23. 23.
    Hilditch A, Drew GM, Naylor RJ : SCH 23390 is a very potent and selective antagonist at vascular dopamine receptors. Eur J Pharmacol 97:333–334, 1984PubMedCrossRefGoogle Scholar
  24. 24.
    Ritvo ER, Yuwiler A, Geller E, et al : Increased blood serotonin and platelets in early infantile autism. Arch Gen Psychiatry 23:556–572, 1970CrossRefGoogle Scholar
  25. 25.
    Campbell M, Freidman E, Green WH, et al : Blood serotonin in schizophrenic children. Int Pharmacopsychiatry 10:213–221, 1975PubMedGoogle Scholar
  26. 26.
    Ritvo ER, Freeman BJ, Geller ED, et al : Effects of fenfluramine on 14 outpatients with the syndrome of autism. J Am Acad Child Psychiatry 22:549–558, 1983PubMedCrossRefGoogle Scholar
  27. 27.
    Campbell M, Perry R, Polonsky BB, et al : An open study of fenfluramine in hospitalized young attitude children. J Aut Dev Disord 16:495–506, 1986CrossRefGoogle Scholar
  28. 28.
    Campbell M, Adams P, Small AM, et al : Efficacy and safety of fenfluramine in autistic children. J Am Acad Child Adol Psychiatry 27:434–439, 1988CrossRefGoogle Scholar
  29. 29.
    Schuster R, Lewis M, Seiden LS : Fenefluramine neurotoxicity. Psychopharm Bull 22(1): 148–151, 1986Google Scholar
  30. 30.
    Cowen PJ : Psychotropic drugs and human 5-HT neuroendocrinology. Trends Pharmacol Sci 8:105–108, 1987CrossRefGoogle Scholar
  31. 31.
    Akil H, Watson SJ, Young E, et al : Endogenous opioids: biology and function. Annu Rev Neurosci 7:223–255, 1982CrossRefGoogle Scholar
  32. 32.
    Walker JM, Moises HC, Coy DH, et al : Comparison of the distribution of dynorphin system and enkephalin system in brain. Science 218:1134–1138, 1982CrossRefGoogle Scholar
  33. 33.
    Martin WR, Eades CG, Thompson JA, et al : The effects of morphine and nalorphine-like drugs in nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197:517–532, 1976PubMedGoogle Scholar
  34. 34.
    Lord JAH, Waterfield AA, Hughes J : Endogenous opioid peptides: Multiple agonists and receptors. Nature (Lond) 267:495–496, 1977CrossRefGoogle Scholar
  35. 35.
    Akil H, Hewlett WA, Barchaw JD, et al : Binding of [3H]Beta-endorphin to rat brain membranes: Characterization of opiate properties and interaction with ACTH. Eur J Pharmacol 64:1–8, 1980PubMedCrossRefGoogle Scholar
  36. 36.
    Pastemiak GW : Multiple morphine and enkephalin receptors and the relief of pain. JAMA 225:1362–1367, 1988Google Scholar
  37. 37.
    Deutsch SI : Rationale for the administration of opiate antagonists in testing infantile autism. Am J Ment Defic 90:631–635, 1986PubMedGoogle Scholar
  38. 38.
    Sahley TL, Panksepp J : Brain opioids and autism: An updated analysis of possible linkages. J Autism Dev Disord 176;201–217, 1987CrossRefGoogle Scholar
  39. 39.
    Sandman CA, Kastin AJ : The influence of fragments of the LPH chains on learning, memory, and attention in animals and man. Pharmacol Ther 13:39–60, 1981PubMedCrossRefGoogle Scholar
  40. 40.
    Zagon IS, McLaughlin PJ : Naltrexone modulates body and brain development in rats: A role for endogenous opioid systems in growth. Life Sci 35:2057–2064, 1984PubMedCrossRefGoogle Scholar
  41. 41.
    Weizman R, Weizman A, Tyano S, et al : Humoral-endorphin blood levels in autistic, schizophrenic, and healthy subjects. Psychopharmacology 82:368–370, 1984PubMedCrossRefGoogle Scholar
  42. 42.
    Weizman R, Gil-ad I, Dick J, et al: Low plasma immunoreactive beta-endorphin levels in autism. J Am Acad Child Psychiatry (in press)Google Scholar
  43. 43.
    Gillberg C, Terenius L, Lonnerholm G : Endorphin activity in childhood psychosis. Arch Gen Psychiatry 42:780–783, 1985PubMedCrossRefGoogle Scholar
  44. 44.
    Herman BH, Hammock MK, Arthur-Smith A, et al : Naltrexone decreases self-injurious behavior. Ann Neurol 22:550–552, 1987PubMedCrossRefGoogle Scholar
  45. 45.
    Campbell M, Overall JE, Small AM, et al : Naltrexone in autistic children: an acute open dose range tolerance trial. J Am Acad Child Adol Psychiatry 28:200–206, 1989CrossRefGoogle Scholar
  46. 46.
    Cotton R, Giles MG, Miller L, et al : ICI 174,864: A highly selective antagonist for the opioid-delta receptor. Eur J Pharmacol 97:331–332, 1984PubMedCrossRefGoogle Scholar
  47. 47.
    Smith CFC : 16-Me Cyprenorphine (RX 8008M): A potent opioid antagonist with some selectivity. Life Sci 40:267–274, 1987PubMedCrossRefGoogle Scholar
  48. 48.
    Portoghese, PS, Lipkowski AW, Takemori AE : Binaltorphimine and Nor-binaltorphimine, potent and selective K-opioid receptor antagonists. Life Sci 40:1287–1292, 1987PubMedCrossRefGoogle Scholar
  49. 49.
    Ratey JJ, Mikkelsen E, Sorgi P, et al : Autism: The treatment of aggressive behaviors. J Clin Psychopharmacol 7:35–41, 1987PubMedGoogle Scholar
  50. 50.
    Mason ST, Fibiger HC : Current concepts. I. Anxiety: The locus coeruleus disconnection. Life Sci 25:2141–2147, 1979PubMedCrossRefGoogle Scholar
  51. 51.
    Redmond DE, Huang YH : Current concepts. II. New evidence for a locus coeruleus-norepinephrine connection with anxiety. Life Sci 25:2145–2162, 1979CrossRefGoogle Scholar
  52. 52.
    Wilsher CR, Bennett D, Chase CH, et al : Piracetam and dyslexia: Effects on reading test. J Clin Psychopharmacol 7:230–237, 1987PubMedCrossRefGoogle Scholar
  53. 53.
    Conners CK, Blouin AG, Winglec M, et al : Piracetam and event-related potentials in dyslexic males. Int J Psychophysiol 4:19–27, 1986PubMedCrossRefGoogle Scholar
  54. 54.
    Helfgott E, Rudel RG, Kairam R : The effects of piracetam on short and long-term verbal retrieval in dyslexic boys. Int J Psychophysiol 4:53–61, 1986PubMedCrossRefGoogle Scholar
  55. 55.
    Dilanni M, Wilsher CR, Blank MS, et al : The effects of piracetam in children with dyslexia. J Clin Psychopharmacol 5:272–278, 1985CrossRefGoogle Scholar
  56. 56.
    Sarter M, Schneider HH, Stephen DN : Treatment strategies for senile dementia: Antagonist beta-carbolines. Trends Neurosci 11(1): 13–16, 1988PubMedCrossRefGoogle Scholar
  57. 57.
    Mamounas LA, Thompson RF, Lynch G, et al : Classical conditioning of the rabbit eyelid response increases glutamate receptor binding in hippocampal synaptic membranes. Proc Natl Acad Sci USA 81:2548–2552, 1984PubMedCrossRefGoogle Scholar
  58. 58.
    Agruso VM, Matthews MD : Effects of glutamic acid on operant behavior, activity and open field behavior in rats. Psychol Rep 57:1003–1004, 1985PubMedCrossRefGoogle Scholar
  59. 59.
    Sahai S, Buselmaier W, Brussman A : 2-Aminophosphonobutyric acid selectivity blocks two-way avoidance learning in the mouse. Neurosci Lett 56:137–142, 1985PubMedCrossRefGoogle Scholar
  60. 60.
    Freed WJ, Wyatt RJ : Impairment of instrumental learning in rats by glutamic acid diethyl ester. Pharmacol Biochem Behav 14:223–226, 1981PubMedCrossRefGoogle Scholar
  61. 61.
    Vogel W, Broverman DM, Draguns JG, et al : The role of glutamic acid in cognitive behaviors. Psychol Bull 65:367–382, 1966PubMedCrossRefGoogle Scholar
  62. 62.
    Bologa L, Sharma J, Roberts E : Dehydroepiandrosterone and its sulfated derivative reduce neuronal death and enhance astrocytic differentiation in brain cell culture. J Neurosci Res 17:225–334, 1987PubMedCrossRefGoogle Scholar
  63. 63.
    Roberts E, Bologa L, Flood JF, et al : Effects of dehydroepiandrosterone and its sulfate on brain tissue culture and on memory on mice. Brain Res 406:357–362, 1987PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Frank J. VocciJr
    • 1
  • Stephen I. Deutsch
    • 2
    • 3
  1. 1.Medications Development Program, Division of Preclinical ResearchNational Institute on Drug AbuseRockvilleUSA
  2. 2.Psychiatry ServiceVeterans Administration Medical CenterUSA
  3. 3.Department of PsychiatryGeorgetown University School of MedicineUSA

Personalised recommendations