Skip to main content

Experimental Induction of Dominant Mutations in Mammals by Ionizing Radiations and Chemicals

  • Chapter
Book cover Issues and Reviews in Teratology

Abstract

Dominant mutations cause their effects in heterozygotes, and if they have complete penetrance, all heterozygotes are affected. Many mutations discussed in this review have incomplete dominance (semidominance), which means that the heterozygote is intermediate in effect between the homozygotes. Often the mutation is homozygous lethal. Some dominant mutations are X-linked; most are autosomal. This review covers dominant mutations with effects detected in late pregnancy or postnatally, and it omits results of tests for dominant lethals, chromosomal abnormalities, histocompatibility mutations, and isozyme variants detected by electrophoresis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, P. M., Fabricant, J. D., and Legator, M. S. 1981. Cyclophosphamide-induced spermatogenic effects detected in the F1 generation by behavioral testing. Science 211:80–82.

    PubMed  CAS  Google Scholar 

  • Adams, P. M., Shabrawy, O., and Legator, M. S. 1984. Male transmitted developmental and neurobehavioral deficits. Teratog. Carcinog. Mutag. 4:149–169.

    CAS  Google Scholar 

  • Bailey, D. W. 1978. Sources of subline divergence and their relative importance for sublines of six major inbred strains of mice, in: Origins of Inbred Mice, H. C. Morse, III, ed. Academic Press, New York, pp. 197–215.

    Google Scholar 

  • Baker, T. G. 1973. The effects of ionizing radiation on the mammalian ovary with particular reference to oogenesis, in: Handbook of Physiology, Section 7: Endocrinology 2 (Part 1), pp. 349–361.

    Google Scholar 

  • Bartsch-Sandhoff, M. 1974. Skeletal abnormalities in mouse embryos after irradiation of the sire. Humangenetik 25:93–100.

    PubMed  CAS  Google Scholar 

  • Batchelor, A. L., Phillips, R. J. S., and Searle, A. G. 1966. A comparison of the mutagenic effectiveness of chronic neutron- and γ -irradiation of mouse spermatogonia. Mutat. Res. 3:218–229.

    PubMed  CAS  Google Scholar 

  • Batchelor, A. L., Phillips, R. J. S., and Searle, A. G. 1967. The reversed dose-rate effect with fast neutron irradiation of mouse spermatogonia. Mutat. Res. 4:229–231.

    Google Scholar 

  • BEIR III (Advisory Committee on the Biological Effects of Ionizing Radiation of the United States National Academy of Sciences). 1980. Genetic effects, in: The Effects on Populations of Exposure to Low Levels of Ionizing Radiation. National Academy Press, Washington, D.C., pp. 91–180 in typescript ed.

    Google Scholar 

  • BEIR III (Advisory Committee on the Biological Effects of Ionizing Radiation of the United States National Academy of Sciences). 1980. Genetic effects, in: The Effects on Populations of Exposure to Low Levels of Ionizing Radiation. National Academy Press, Washington, D.C., pp. 71–134 in typescript ed.

    Google Scholar 

  • Borum, K. 1961. Oogenesis in the mouse, a study of the meiotic prophase. Exp. Cell Res. 24:495–507.

    PubMed  CAS  Google Scholar 

  • Brambell, F. W. R. 1927. The development and morphology of the gonads of the mouse. Part I. The morphogenesis of the indifferent gonads and of the ovary. Proc. R. Soc. London Ser. B 101:391–409.

    Google Scholar 

  • Cacheiro, N. L. A., and Russell, L. B. 1975. Evidence that linkage group IV as well as linkage group X of the mouse are in chromosome 10. Genet. Res. 25:193–195.

    PubMed  CAS  Google Scholar 

  • Carter, T. C., and Lyon, M. F. 1961. An attempt to estimate the induction by X-rays of recessive lethal and visible mutations in mice. Genet. Res. 2:296–305.

    Google Scholar 

  • Carter, T. C., Lyon, M. F., and Phillips, R. J. S. 1958. Genetic hazard of ionizing radiations. Nature 182:409.

    PubMed  CAS  Google Scholar 

  • CCEM (Committee on Chemical Environmental Mutagens). 1983. Identifying and Estimating the Genetic Impact of Chemical Mutagens. National Academy Press, Washington, D.C.

    Google Scholar 

  • Charles, D. R., Tihen, J. A., Otis, E. M., and Grobman, A. B. 1960. Genetic effects of chronic X-irradiation exposure in mice. UR-565, AEC Research and Development Report. University of Rochester Atomic Energy Project, Rochester, N.Y.

    Google Scholar 

  • Charles, D. R., Tihen, J. A., Otis, E. M., and Grobman, A. B. 1961. Genetic effects of chronic exposure in mice. Genetics 46:5–8.

    PubMed  CAS  Google Scholar 

  • Clermont, Y., Leblond, C. P., and Messier, B. 1959. Durée du cycle de l’épithélium séminal du rat, Arch. Anat. Microsc. Morphol. Exp. 48 bis:37.

    PubMed  CAS  Google Scholar 

  • Gumming, R. B., and Walton, M. F. 1971. Genetic effects of cyclophosphamide in the germ cells of male mice. Genetics 68:s14.

    Google Scholar 

  • Deol, M. S., Grüneberg, H., Searle, A. G., and Truslove, G. M. 1957. Genetical differentiation involving morphological characters in an inbred strain of mice. I. A British branch of the C57BL strain. J. Morphol. 100:345–375.

    Google Scholar 

  • Ehling, U. H. 1965. The frequency of X-ray induced dominant mutations affecting the skeleton of mice. Genetics 51:723–732.

    PubMed  CAS  Google Scholar 

  • Ehling, U. H. 1966. Dominant mutations affecting the skeleton in offspring of X-irradiated male mice. Genetics 54:1381–1389.

    PubMed  CAS  Google Scholar 

  • Ehling, U. H. 1967. Transmission of radiation-induced dominant skeletal mutations in mice. Annu. Prog. Rep. Oak Ridge Natl. Lab. Biol. Div. ORNL-4240:155–156.

    Google Scholar 

  • Ehling, U. H. 1970. Evaluation of presumed dominant skeletal mutations, in: Chemical Mutagenesis in Mammals and Man, F. Vogel and G. Ròhrborn, eds. Springer, Berlin, pp. 162–166.

    Google Scholar 

  • Ehling, U. H. 1980a. Comparison of the mutagenic effect of chemicals and ionizing radiation in germ cells of the mouse, in: Progress in Environmental Mutagenesis, M. Alacevic, ed. Elsevier/North-Holland, Amsterdam, pp. 47–58.

    Google Scholar 

  • Ehling, U. H. 1980b. Strahlengenetisches risiko des menschen. Umsch. Wiss. Tech. 80:754–759.

    Google Scholar 

  • Ehling, U. H. 1980c. Induction of gene mutations in germ cells of the mouse. Arch. Toxicol. 46:123–138.

    CAS  Google Scholar 

  • Ehling, U. H. 1983. Cataracts—indicators for dominant mutations in mice and man, in: Utilization of Mammalian Specific Locus Studies in Hazard Evaluation and Estimation of Genetic Risk, F. J. de Serres and W. Sheridan, eds. Plenum Press, New York, pp. 169–190.

    Google Scholar 

  • Ehling, U. H. 1984a. Variants and mutants. Mutat. Res. 127:189–190.

    PubMed  CAS  Google Scholar 

  • Ehling, U. H. 1984b. Methods to estimate the genetic risk, in: Mutations in Man, G. Obe, ed. Springer, Berlin, pp. 291–318.

    Google Scholar 

  • Ehling, U. H. 1985. Induction and manifestation of hereditary cataracts, in: Assessment of Risk from Low-level Exposure to Radiation and Chemicals, A. D. Woodhead, C. J. Shellabarger, V. Pond, and A. Hollaender, eds. Plenum Press, New York, pp. 345–367.

    Google Scholar 

  • Ehling, U. H. 1986. The quantification of the frequency of induced dominant and recessive mutations, in: Risk and Reason: Risk Assessment in Relation to Environmental Mutagens and Carcinogens, Liss, New York, pp. 95–98.

    Google Scholar 

  • Ehling, U. H., and Kratochvilova, J. 1979. Direct estimation of genetic risk from radiation in the first generation. VI Int. Congr. Radiat. Res. Abstr., p. 180.

    Google Scholar 

  • Ehling, U. H., and Randolph, M. L. 1962. Skeletal abnormalities in the F1 generation of mice exposed to ionizing radiations. Genetics 47:1543–1555.

    PubMed  CAS  Google Scholar 

  • Ehling, U. H., Favor, J., Kratochvilova, J., and Neuhäuser-Klaus, A. 1982. Dominant cataract mutations and specific-locus mutations in mice induced by radiation or ethylnitrosourea. Mutat. Res. 92:181–192.

    PubMed  CAS  Google Scholar 

  • Fabricant, J. D., Legator, M. S., and Adams, P. M. 1983. Post-meiotic cell mediation of behavior in progeny of male rats treated with cyclophosphamide. Mutat. Res. 119:185–190.

    PubMed  CAS  Google Scholar 

  • Fanini, D., Legator, M. S., and Adams, P. M. 1984. Effects of paternal ethylene dibromide exposure on F1 generation behavior in the rat. Mutat. Res. 139:133–138.

    PubMed  CAS  Google Scholar 

  • Favor, J. 1983. A comparison of the dominant cataract and recessive specific-locus mutation rates induced by treatment of male mice with ethylnitrosourea. Mutat. Res. 110:367–382.

    PubMed  CAS  Google Scholar 

  • Favor, J. 1984. Characterization of dominant cataract mutations in mice: penetrance, fertility and homozygous viability of mutations recovered after 250 mg/kg ethylnitrosourea paternal treatment. Genet. Res. 44:183–197.

    PubMed  CAS  Google Scholar 

  • Favor, J. 1986. A comparison of the mutation rates to dominant and recessive alleles in germ cells of the mouse, in: Genetic Toxicology of Environmental Chemicals, Part B: Genetic Effects and Applied Mutagenesis, C. Ramel, B. Lambert, and J. Magnusson, eds. Liss, New York, pp. 519–526.

    Google Scholar 

  • Favor, J., Neuhäuser-Klaus, A., and Ehling, U. H. 1987. Radiation-induced forward and reverse specific locus mutations and dominant cataract mutations in treated strain BALB/c and DBA/2 male mice. Mutat. Res. 177:161–169.

    PubMed  CAS  Google Scholar 

  • Favor, J., Neuhäuser-Klaus, A., and Ehling, U. H. 1988. The effect of dose fractionation on the frequency of ethylnitrosourea-induced dominant cataract and recessive specific locus mutations in germ cells of the mouse. Mutat. Res. 198:269–275.

    PubMed  CAS  Google Scholar 

  • Frölen, H. 1965. The effect on the length of life in the offspring of X-irradiated male mice. Mutat. Res. 2:287–292.

    PubMed  Google Scholar 

  • Generoso, W. M., Rutledge, J. C., Cain, K. T., Hughes, L. A., and Braden, P. W. 1987. Exposure of female mice to ethylene oxide within hours after mating leads to fetal malformation and death. Mutat. Res. 176:269–274.

    PubMed  CAS  Google Scholar 

  • Graw, J., Favor, J., Neuhäuser-Klaus, A., and Ehling, U. H. 1986. Dominant cataract and recessive specific locus mutations in offspring of X-irradiated male mice. Mutat. Res. 159:47–54.

    PubMed  CAS  Google Scholar 

  • Green, E. L. 1968. Genetic effects of radiation on mammalian populations. Annu. Rev. Genet. 2:87–120.

    Google Scholar 

  • Grüneberg, H., Bains, G. S., Berry, R. J., Riles, L., Smith, C. A. B., and Weiss, R. A. 1966. A search for genetic effects of high natural radioactivity in South India. Med. Res. Counc. G. B. Spec. Rep. Ser. 307.

    Google Scholar 

  • Haldane, J. B. S. 1936. The amount of heterozygosis to be expected in an approximately pure line. J. Genet. 32:375–391.

    Google Scholar 

  • Hitotsumachi, S., Carpenter, D. A., and Russell, W. L. 1985. Dose-repetition increases the mutagenic effectiveness of N-ethyl-N-nitrosourea in mouse spermatogonia. Proc. Natl. Acad. Set. USA 82:6619–6621.

    CAS  Google Scholar 

  • Hsu, L. L., Adams, P. M., Fanini, D., and Legator, M. S. 1985. Ethylene dibromide effects of paternal exposure on the neurotransmitter enzymes in the developing brain of F-l progeny. Mutat. Res. 147:197–203.

    PubMed  CAS  Google Scholar 

  • Hsu, L. L., Adams, P. M., and Legator, M. S. 1987. Cyclophosphamide: effects of paternal exposure on the brain chemistry of the F-l progeny. J. Toxicol. Environ. Health 21:471–481.

    PubMed  CAS  Google Scholar 

  • IARC (International Agency for Research on Cancer). 1986. Long-Term and Short-Term Assays for Carcinogens: A Critical Appraisal, R. Montesano, H. Bartsch, H. Vainio, J. Wilbourn, and H. Yamasaki, eds. I ARC Sci. Publ. No. 83, p. 71.

    Google Scholar 

  • Jacobi, W., Paretzke, H. G., and Ehling, U. H. 1981. Strahlenexposition und Strahlenrisiko der Bevölkerung, GSF-Bericht S-710, Gesellschaft für Strahlen- und Umweltforschung, Neuherberg.

    Google Scholar 

  • Jenkinson, P. C., Anderson, D., and Gangolli, S. D. 1987. Increased incidence of abnormal foetuses in the offspring of cyclophosphamide-treated male mice. Mutat. Res. 188:57–62.

    PubMed  CAS  Google Scholar 

  • Johnson, F. M., and Lewis, S. E. 1981. Electrophoretically detected germinal mutations induced in the mouse by ethylnitrosourea. Proc. Natl. Acad. Sci. USA 78:3138–3141.

    PubMed  CAS  Google Scholar 

  • Johnson, F. M., and Lovell, D. P. 1983. Dominant skeletal mutations are not induced by ethylnitrosourea in mouse spermatogonia. Abstracts of the 14th Annual Meeting of the Environmental Mutagen Society, San Antonio, p. 184.

    Google Scholar 

  • Kalter, H., and Warkany, J. 1983. Congenital malformations: etiologic factors and their role in prevention. N. Engl. J. Med. 308:424–431.

    PubMed  CAS  Google Scholar 

  • Kirk, K. M., and Lyon, M. F. 1982. Induction of congenital anomalies in offspring of female mice exposed to varying doses of X-rays. Mutat. Res. 106:73–83.

    PubMed  CAS  Google Scholar 

  • Kirk, K. M., and Lyon, M. F. 1984. Induction of congenital malformations in the offspring of male mice treated with X-rays at pre-meiotic and post-meiotic stages. Mutat. Res. 125:75–85.

    PubMed  CAS  Google Scholar 

  • Knudsen, I., Hansen, E. V., Meyer, O. A., and Poulsen, E. 1977. A proposed method for the simultaneous detection of germ-cell mutations leading to fetal death (dominant lethality) and of malformations (male teratogenicity) in mammals. Mutat. Res. 48:267–270.

    PubMed  CAS  Google Scholar 

  • Kohn, H. I., Epling, M. L., Guttman, P. H., and Bailey, D. W. 1965. Effect of paternal (spermatogonial) X-ray exposure in the mouse: life span, X-ray tolerance, and tumor incidence of the progeny. Radiat. Res. 25:423–434.

    PubMed  CAS  Google Scholar 

  • Kratochvilova, J. 1981. Dominant cataract mutations detected in offspring of gamma-irradiated male mice. J. Hered. 72:301–307.

    Google Scholar 

  • Kratochvilova, J., and Ehling, U. H. 1979. Dominant cataract mutations induced by γ-irradiation of male mice. Mutat. Res. 63:221–223.

    PubMed  CAS  Google Scholar 

  • Kratochvilova, J., Favor, J., and Neuhüuser-Klaus, A. 1988. Dominant cataract and recessive specific-locus mutations detected in offspring of procarbazine-treated male mice. Mutat. Res. 198:295–301.

    PubMed  CAS  Google Scholar 

  • Lewis, S. E., and Johnson, F. M. 1983. Dominant and recessive effects of electrophoretically detected specific locus mutations, in: Utilization of Mammalian Specific Locus Studies in Hazard Evaluation and Estimation of Genetic Risk, F. J. de Serres and W. Sheridan, eds. Plenum Press, New York, pp. 267–278.

    Google Scholar 

  • Lovell, D. P., Willis, D. B., and Johnson, F. M. 1985. Lack of evidence for skeletal abnormalities in offspring of mice exposed to ethylnitrosourea. Proc. Natl. Acad. Sci. USA 82:2852–2856.

    PubMed  CAS  Google Scholar 

  • Lowery, M. C., Rithidech, K., Au, W. W., Adams, P. M., and Legator, M. S. 1987. Genetic damage and the expression of behavioral abnormalities in the progeny of male rats exposed to ionizing radiation. Environ. Mutag. 9 (Suppl. 8):64.

    Google Scholar 

  • Lüming, K. G. 1972. Studies of irradiated mouse populations. IV. Effects on productivity in the 7th to 18th generations. Mutat. Res. 14:331–344.

    Google Scholar 

  • Lüning, K. G., and Eiche, A. 1977. Penetrance and selection. Mutat. Res. 44:451–454.

    PubMed  Google Scholar 

  • Lüming, K. G., and Searle, A. G. 1971. Estimates of the genetic risks from ionizing irradiation. Mutat. Res. 12:291–304.

    Google Scholar 

  • Lyon, M. F., and Morris, T. 1966. Mutation rates at a new set of specific loci in the mouse Genet. Res. 7:12–17.

    PubMed  CAS  Google Scholar 

  • Lyon, M. F., and Morris, T. 1969. Gene and chromosome mutation after large fractionated or unfractionated radiation doses to mouse spermatogonia. Mutat. Res. 8:191–198.

    PubMed  CAS  Google Scholar 

  • Lyon, M. F., and Renshaw, R. 1986. Induction of congenital malformations in the offspring of mutagen treated mice, in: Genetic Toxicology of Environmental Chemicals, Part B: Genetic Effects and Applied Mutagenesis, C. Ramel, B. Lambert, and J. Magnusson, eds. Liss. New York, pp. 449–458.

    Google Scholar 

  • Lyon, M. F., and Renshaw, R. 1988. Induction of congenital malformation in mice by parental irradiation: transmission to later generations. Mutat. Res. 198:277–283.

    PubMed  CAS  Google Scholar 

  • Lyon, M. F., Phillips, R. J. S., and Searle, A. G. 1964. The overall rates of dominant and recessive lethal and visible mutation induced by spermatogonial x-irradiation of mice. Genet. Res. 5:448–467.

    Google Scholar 

  • Lyon, M. F., Phillips, R.J. S., and Bailey, H.J. 1972. Mutagenic effects of repeated small radiation doses to mouse spermatogonia. Mutat. Res. 15:185–190.

    PubMed  CAS  Google Scholar 

  • Lyon, M. F., Phillips, R. J. S., and Fisher, G. 1979. Dose—response curves for radiation-induced gene mutations in mouse oocytes and their interpretation. Mutat. Res. 63:161–173.

    PubMed  CAS  Google Scholar 

  • McGregor, J. F., and Newcombe, H. B. 1961. Dwarfism and eye abnormality in X-irradiated rat populations. Radiat. Res. 14:674–680.

    PubMed  CAS  Google Scholar 

  • McKusick, V. A. 1975. Mendelian Inheritance in Man: Catalogs of Autosomal Dominant, Autosomal Recessive and X-linked Phenotypes, 4th ed. Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • McKusick, V. A. 1978. Mendelian Inheritance in Man: Catalogs of Autosomal Dominant, Autosomal Recessive and X-linked Phenotypes, 5th ed. Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • McKusick, V. A. 1983. Mendelian Inheritance in Man: Catalogs of Autosomal Dominant, Autosomal Recessive and X-linked Phenotypes, 6th ed. Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Mintz, B. 1960. Embryological phases of mammalian gametogenesis. J. Cell. Comp. Physiol. 56(Suppl. l):31–44.

    PubMed  Google Scholar 

  • Nagao, T. 1987. Frequency of congenital defects and dominant lethals in the offspring of male mice treated with methylnitrosourea. Mutat. Res. 177:171–178.

    PubMed  CAS  Google Scholar 

  • Napalkov, N., Likhachev, A., Anisimov, V., Loktionov, A., Zabezhinski, M., Ovsyannikov, A., Wahrendorf, J., Becher, H., and Tomatis, L. 1987a. Promotion of skin tumours by TPA in the progeny of mice exposed pre-natally to DMBA. Carcinogenesis 8:381–385.

    CAS  Google Scholar 

  • Napalkov, N., Loktionov, A., Likhachev, A., Anisimov, V., Zabezhinski, M., and Tomatis, L. 1987b. Persistence of carcinogenic effect in intact progeny of mice treated transplacentally with 7,12-dimethylbenz[α]anthracene. Carcinogenesis 8:381–385.

    CAS  Google Scholar 

  • Newcombe, H. B., and McGregor, J. F. 1964. Learning ability and physical well-being in offspring from rat populations irradiated over many generations. Genetics 50:1065–1081.

    PubMed  Google Scholar 

  • Nomura, T. 1975. Transmission of tumors and malformations to the next generation of mice subsequent to urethan treatment. Cancer Res. 35:264–266.

    PubMed  CAS  Google Scholar 

  • Nomura, T 1978. Changed urethan and radiation response of the mouse germ cell to tumor induction, in: Tumors of Early Life in Man and Animals, L. Severi, ed. Perugia University Press, Perugia, pp. 873–891.

    Google Scholar 

  • Nomura, T 1982a. Parental exposure to X rays and chemicals induces heritable tumours and anomalies in mice. Nature 296:575–577.

    CAS  Google Scholar 

  • Nomura, T 1982b. Role of DNA damage and repair in carcinogenesis, in: Environmental Mutagens and Carcinogens, T. Sugimura, S. Kondo, and H. Takebe, eds. University of Tokyo Press, Tokyo, pp. 223–230.

    Google Scholar 

  • Nomura, T 1983. X-ray-induced germ-line mutation leading to tumors: its manifestation in mice given urethane post-natally. Mutat. Res. 121:59–65.

    PubMed  CAS  Google Scholar 

  • Nomura, T 1984. Quantitative studies on mutagenesis, teratogenesis, and carcinogenesis in mice, in: Problems of Threshold in Chemical Mutagenesis, Y. Tazima, S. Kondo, and Y. Kuroda, eds. EMS Japan, Shizuoka, pp. 27–34.

    Google Scholar 

  • Nomura, T 1986. Further studies on X-ray and chemically induced germ-line alterations causing tumors and malformations in mice, in: Genetic Toxicology of Environmental Chemicals, Part B: Genetic Effects and Applied Mutagenesis, C. Ramel, B. Lambert, and J. Magnusson, eds. Liss, New York, pp. 13–20.

    Google Scholar 

  • Nomura, T 1988. X-ray- and chemically induced germ-line mutation causing phenotypical anomalies in mice. Mutat. Res. 198:309–320.

    PubMed  CAS  Google Scholar 

  • Oakberg, E. F. 1956a. A description of spermiogenesis in the mouse and its use in analysis of the cycle of the seminiferous epithelium and germ cell renewal. Am. J. Anat. 99:391–414.

    CAS  Google Scholar 

  • Oakberg, E. F. 1956b. Duration of spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium. Am. J. Anat. 99:507–516.

    CAS  Google Scholar 

  • Oakberg, E. F. 1969. Radiation response of the testis. Prog. Endocrinol., Proc, 3rd Int. Congr. Endocr. Mexico City, 1968, pp. 1070–1076.

    Google Scholar 

  • Oakberg, E. F. 1975. Effects of radiation on the testis, in: Handbook of Physiology, Section 7: Endocrinology 5:233–243.

    Google Scholar 

  • Oakberg, E. F. 1979. Timing of oocyte maturation in the mouse and its relevance to radiation-induced cell killing and mutational sensitivity. Mutat. Res. 59:39–48.

    PubMed  CAS  Google Scholar 

  • Phillips, R. J. S. 1961. A comparison of mutation induced by acute X and chronic gamma irradiation in mice. Br. J. Radiol. 34:261–264.

    PubMed  CAS  Google Scholar 

  • Rao, A. R. 1982. Inhibitory action of BHA on carcinogenesis in Fl and F2 descendants of mice exposed to DMBA during pregnancy. Int. J. Cancer 30:121 – 124.

    Google Scholar 

  • Roderick, T. H., ed. 1964. The effects of radiation on the hereditary fitness of mammalian populations, Genetics 50:1019–1217.

    Google Scholar 

  • Röhrborn, G., and Vogel, F. 1969. A search for dominant mutations in F1 progeny of male mice treated with trenimone (triethyleneiminobenzoquinone-1,4). Humangenetik 7:43–50.

    PubMed  Google Scholar 

  • Russell, L. B. 1971. Definition of functional units in a small chromosomal segment of the mouse and its use in interpreting the nature of radiation-induced mutations. Mutat. Res. 11:107–123.

    PubMed  CAS  Google Scholar 

  • Russell, L. B., Bangham, J. W., Carpenter, D. A., Guinn, G. M., Hunsicker, P. R., Maddux, S. C., Phipps, E. L., Sega, G. A., and Stelzner, K. F. 1985. Specific-locus experiments and related studies with six chemicals. Annu. Prog. Rep. Oak Ridge Natl. Lab. Biol. Div. ORNL-6248, pp. 66–69.

    Google Scholar 

  • Russell, L. B., Hunsicker, P. R., Oakberg, E. F., Cummings, C. C., and Schmoyer, R. L. 1987. Tests for urethane induction of germ-cell mutations and germ-cell killing in the mouse. Mutat. Res. 188:335–342.

    PubMed  CAS  Google Scholar 

  • Russell, W. L. 1951. X-ray-induced mutations in mice. Cold Spring Harbor Symp. Quant. Biol. 16:327–336.

    PubMed  CAS  Google Scholar 

  • Russell, W. L. 1954. Genetic effects of radiation in mammals, in: Radiation Biology, Volume 1, A. Hollaender, ed. McGraw—Hill, New York, pp. 825–859.

    Google Scholar 

  • Russell, W. L. 1957. Shortening of life in the offspring of male mice exposed to neutron radiation from an atomic bomb. Proc. Natl. Acad. Sci. USA 43:324–329.

    PubMed  CAS  Google Scholar 

  • Russell, W. L. 1963. The effect of radiation dose rate and fractionation on mutation in mice, in: Repair from Genetic Radiation, F. Sobels, ed. Pergamon Press, Oxford, pp. 205–217, 231–235.

    Google Scholar 

  • Russell, W. L. 1964. Effect of radiation dose fractionation on mutation frequency in mouse spermatogonia. Genetics 50:282.

    Google Scholar 

  • Russell, W. L. 1974. Future research in mouse radiation genetics. Genetics 78:135–138.

    PubMed  CAS  Google Scholar 

  • Russell, W. L. 1977. Mutation frequencies in female mice and the estimation of genetic hazards of radiation in women. Proc. Natl. Acad. Sci. USA 74:3523–3527.

    PubMed  CAS  Google Scholar 

  • Russell, W. L. 1981. Problems and solutions in the estimation of genetic risks from radiation and chemicals, in: Measurement of Risks, G. G. Berg and H. D. Maillie, eds. Plenum Press, New York, pp. 361–380.

    Google Scholar 

  • Russell, W. L. 1986. Positive genetic hazard predictions from short-term tests have proved false for results in mammalian spermatogonia with all environmental chemicals so far tested, in: Genetic Toxicology of Environmental Chemicals, PartB: Genetic Effects and Applied Mutagenesis, C. Ramel, B. Lambert, and J. Magnusson, eds. Liss, New York, pp. 67–74.

    Google Scholar 

  • Russell, W. L., and Hunsicker, P. R. 1983. Extreme sensitivity of one particular germ-cell stage in male mice to induction of specific-locus mutations by methylnitrosourea. Environ. Mutag. 5:498.

    Google Scholar 

  • Russell, W. L., and Hunsicker, P. R. 1984. Mutagenic effect of ethylnitrosourea (ENU) on post-stemcell stages in male mice. Environ. Mutag. 6:390.

    Google Scholar 

  • Russell, W. L., and Hunsicker, P. R. 1988. Dominant mutagenic effect of ENU on first-generation litter size in mice following treatment of spermatogonial stem cells. Environ. Mol. Mutag. 11(Suppl. 11):90.

    Google Scholar 

  • Russell, W. L., and Russell, L. B. 1959. Radiation-induced genetic damage in mice. Prog. Nucl. Energy Ser. 6 2:179–188.

    Google Scholar 

  • Russell, W. L., Bangham, J. W., and Gower, J. S. 1958. Comparison between mutations induced in spermatogonial and postspermatogonial stages in the mouse, in: Proc. 10th Int. Congr. Genet., Volume 2. University of Toronto Press, Toronto, pp. 245–246.

    Google Scholar 

  • Russell, W. L., Kelly, E. M., Hunsicker, P. R., Bangham, J. W., Maddux, S. C, and Phipps, E. L. 1979. Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse. Proc. Natl Acad. Sci. USA 76:5818–5819.

    PubMed  CAS  Google Scholar 

  • Russell, W. L., Hunsicker, P. R., Raymer, G. D., Steele, M. H., Stelzner, K. F., and Thompson, H. M. 1982. Dose—response curve for ethylnitrosourea-induced specific-locus mutations in mouse spermatogonia. Proc. Natl. Acad. Sci. USA 79:3589–3591.

    PubMed  CAS  Google Scholar 

  • Rutledge, J. C., Cain, K. T., Hughes, L. A., Braden, P. W., and Generoso, W. M. 1986. Difference between two hybrid stocks of mice in the incidence of congenital abnormalities following X-ray exposure of stem-cell spermatogonia. Mutat. Res. 163:299– 302.

    Google Scholar 

  • Searle, A. G. 1964. Effects of low-level irradiation on fitness and skeletal variation in an inbred mouse strain. Genetics 50:1159–1178.

    PubMed  Google Scholar 

  • Searle, A. G. 1974. Mutation induction in mice. Adv. Radiat. Biol. 4:131–207.

    Google Scholar 

  • Searle, A. G. 1987. Evidence for induction of early-acting dominants by irradiation of male and female germ-cells in mice. Report submitted to UNSCEAR.

    Google Scholar 

  • Searle, A. G., and Beechey, C. 1986. The role of dominant visibles in mutagenicity testing, in: Genetic Toxicology of Environmental Chemicals, Part B: Genetic Effects and Applied Mutagenesis, C. Ramel, B. Lambert, and J. Magnusson, eds. Liss, New York, pp. 511–518.

    Google Scholar 

  • Searle, A. G., and Papworth, D. G. 1986. Analysis of pre- and post-natal mortality after spermatogonial irradiation of mice. Report submitted to UNSCEAR.

    Google Scholar 

  • Selby, P. B. 1979. Radiation-induced dominant skeletal mutations in mice: mutation rate, characteristics, and usefulness in estimating genetic hazard to humans from radiation. Radiat. Res., Proc. 6th Int. Congr. pp. 537–544.

    Google Scholar 

  • Selby, P. B. 1981. Radiation genetics, in: The Mouse in Biomedical Research, Volume I, H. L. Foster, J. D. Small, and J. G. Fox, eds. Academic Press, New York, pp. 263–283.

    Google Scholar 

  • Selby, P. B. 1982. Dominant skeletal mutations: applications in mutagenicity testing and risk estimation, in: Mutagenicity—New Horizons in Genetic Toxicology, J. A. Heddle, ed. Academic Press, New York, pp. 385–406.

    Google Scholar 

  • Selby, P. B. 1983. Applications in genetic risk estimation of data on the induction of dominant skeletal mutations in mice, in: Utilization of Mammalian Specific Locus Studies in Hazard Evaluation and Estimation of Genetic Risk, F. J. de Serres and W. Sheridan, eds. Plenum Press, New York, pp. 191–210.

    Google Scholar 

  • Selby, P. B. 1986. Synergistic and antagonistic interactions of two unlinked radiation-induced dominant skeletal mutations in mice. Mouse News Lett. 75:43–44.

    Google Scholar 

  • Selby, P. B. 1987. A rapid method for preparing high quality alizarin stained skeletons of adult mice. Stain Technol. 62:143–146.

    PubMed  CAS  Google Scholar 

  • Selby, P. B., and Lee, S. S. 1980. Induction and nature of dominant skeletal mutations. Annu. Prog. Rep. Oak Ridge Natl. Lab. Biol. Div. ORNL-5685, pp. 65–66.

    Google Scholar 

  • Selby, P. B., and Niemann, S. L. 1984. Non-breeding-test methods for dominant skeletal mutations shown by ethylnitrosourea to be easily applicable to offspring examined in specific-locus experiments. Mutat. Res. 127:93–105.

    PubMed  CAS  Google Scholar 

  • Selby, P. B., and Russell, W. L. 1985. First-generation litter-size reduction following irradiation of spermatogonial stem cells in mice and its use in risk estimation. Environ. Mutag. 7:451–469.

    CAS  Google Scholar 

  • Selby, P. B., and Selby, P. R. 1977a. Gamma-ray-induced dominant mutations that cause skeletal abnormalities in mice. I. Plan, summary of results and discussion. Mutat. Res. 43:357–375.

    CAS  Google Scholar 

  • Selby, P. B., and Selby, P. R. 1977b. Response to K. G. Liming and A. Eiche, Penetrance and selection. Mutat. Res. 44:453–454.

    Google Scholar 

  • Selby, P. B., and Selby, P. R. 1978a. Gamma-ray-induced dominant mutations that cause skeletal abnormalities in mice. III. Description of proved mutations. Mutat. Res. 50:341–351.

    CAS  Google Scholar 

  • Selby, P. B., and Selby, P. R. 1978b. Gamma-ray-induced dominant mutations that cause skeletal abnormalities in mice. II. Description of proved mutations. Mutat. Res. 51:199–236.

    CAS  Google Scholar 

  • Selby, P. B., Whitt, B. J. M., Raymer, G. D., and McKinley, T. W., Jr. 1984a. Breeding-test experiment shows transmission of many ENU-induced mutations. Annu. Prog. Rep. Oak Ridge Natl. Lab. Biol. Div. ORNL-6021, pp. 103–104.

    Google Scholar 

  • Selby, P. B., Whitt, B. J. M., Raymer, G. D., and McKinley, T. W., Jr. 1984b. Breeding-test experiment demonstrates transmissibility of many dominant skeletal mutations induced by ethylnitrosourea. Environ. Mutag. 6:391.

    Google Scholar 

  • Selby, P. B., Raymer, G. D., McKinley, T. W., Jr., and Niemann, S. L. 1987. Synergistic and antagonistic interactions of two radiation-induced dominant skeletal mutations in mice. Annu. Prog. Rep. Oak Ridge Natl. Lab. Biol. Div. ORNL-6353, pp. 86–87.

    Google Scholar 

  • Selby, P. B., Raymer, G. D., and Hunsicker, P. R. 1988. High frequency of dominant mutations causing stunted growth is induced in spermatogonial stem cells by ENU. Environ. Mol. Mutag. 11(Suppl. 11):93.

    Google Scholar 

  • Sillence, D. O., Ritchie, H. E., and Selby, P. B. 1987. Animal model: skeletal anomalies in mice with cleidocranial dysplasia. Am. J. Med. Genet. 27:75–85.

    PubMed  CAS  Google Scholar 

  • Spalding, J. F. 1964. Longevity of first and second generation offspring from male mice exposed to fission neutrons and gamma rays, in: Proc. Int. Symp. Effects of Ionizing Radiations on the Reproductive System, W. D. Carlson and F. X. Gassner, eds. Pergamon Press, Oxford, pp. 147–152.

    Google Scholar 

  • Tomatis, L. 1965. Increased incidence of tumours in F1 and F2 generations from pregnant mice injected with a polycyclic hydrocarbon. Proc. Soc. Exp. Biol. Med. 119:743–747

    PubMed  CAS  Google Scholar 

  • Tomatis, L. 1979. Prenatal exposure to chemical carcinogens and its effect on subsequent generations. Natl. Cancer Inst. Monogr. 51:159–184.

    PubMed  Google Scholar 

  • Tomatis, L., and Goodall, C. M. 1969. The occurrence of tumours in F1, F2 and F3 descendants of pregnant mice injected with 7,12-dimethylbenz[a]anthracene. Int. J. Cancer 4:219–225.

    PubMed  CAS  Google Scholar 

  • Tomatis, L., Hilfrich, J., and Turusov, V. 1975. The occurrence of tumours in F1, F2 and F3 descendants of BD rats exposed to N-nitrosomethylurea during pregnancy. Int. J. Cancer 15:385–390.

    PubMed  CAS  Google Scholar 

  • Tomatis, L., Ponomarkov, V., and Turusov, V. 1977. Effects of ethylnitrosourea administration during pregnancy on three subsequent generations of BDVI rats. Int. J. Cancer 19:240–248.

    PubMed  CAS  Google Scholar 

  • Tomatis, L., Cabral, J. R. P., Likhachev, A. J., and Ponomarkov, V. 1981. Increased cancel incidence in the progeny of male rats exposed to ethylnitrosourea before mating. Int. J. Cancer 28:475–478.

    PubMed  CAS  Google Scholar 

  • Tomatis, L., Cabral, J. R. P., Likhachev, A. J., and Ponomarkov, V. 1982. Increased cancer incidence in the progeny of male rats exposed to ethylnitrosourea before mating, in: Environmental Mutagens and Carcinogens, T. Sugimura, S. Kondo, and H. Takebe, eds. University of Tokyo Press, Tokyo, pp. 231–238.

    Google Scholar 

  • Trasler, J. M., Hales, B. F., and Robaire, B. 1985. Paternal cyclophosphamide treatment of rats causes fetal loss and malformations without affecting male fertility. Nature 316:144–146.

    PubMed  CAS  Google Scholar 

  • UNSCEAR. 1977. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation, Sources and Effects of Ionizing Radiation. United Nations, New York, Sales No. E.77.IX.1. pp. 425–564.

    Google Scholar 

  • UNSCEAR. 1982. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation, Ionizing Radiation: Sources and Biological Effects. United Nations, New York, Sales No. E.82.IX.8, pp. 425–569.

    Google Scholar 

  • UNSCEAR. 1986. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation, Genetic and Somatic Effects of Ionizing Radiation. United Nations, New York, Sales No. E.86.IX.9, pp. 27–164.

    Google Scholar 

  • West, J. D., and Fisher, G. 1985. Inherited cataracts in inbred mice. Genet. Res. 46:45–56.

    PubMed  CAS  Google Scholar 

  • West, J. D., and Fisher, G. 1986. Further experience of the mouse dominant cataract mutation test from an experiment with ethylnitrosourea. Mutat. Res. 164:127–136.

    PubMed  CAS  Google Scholar 

  • West, J. D., Peters, J., and Lyon, M. F. 1984. Genetic differences between two substrains of the inbred 101 mouse strain. Genet. Res. 44:343–346.

    PubMed  CAS  Google Scholar 

  • West, J. D., Kirk, K. M., Goyder, Y., and Lyon, M. F. 1985a. Discrimination between the effects of X-ray irradiation of the mouse oocyte and uterus on the induction of dominant lethals and congenital anomalies I. Embryo transfer experiments. Mutat. Res. 149:221–230.

    CAS  Google Scholar 

  • West, J. D., Kirk, K. M., Goyder, T., and Lyon, M. F. 1985b. Discrimination between the effects of X-ray irradiation of the mouse oocyte and uterus on the induction of dominant lethals and congenital anomalies II. Localised irradiation experiments. Mutat. Res. 149:231–238.

    CAS  Google Scholar 

  • West, J. D., Lyon, M. F., Peters, J., and Selby, P. B. 1985c. Genetic differences between substrains of the inbred mouse strain 101 and designation of a new strain 102. Genet. Res. 46:349–352.

    CAS  Google Scholar 

  • Widmaier, R. 1963. Über die postnatale Hodenentwkklung und Keimzellreifung bei dei Maus. Z. Mikrosk. Anat. Forsch. 70:215–241.

    PubMed  CAS  Google Scholar 

  • Wright, S. 1968. Evolution and the Genetics of Populations, Volume 1. University of Chicago Press, Chicago.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Selby, P.B. (1990). Experimental Induction of Dominant Mutations in Mammals by Ionizing Radiations and Chemicals. In: Kalter, H. (eds) Issues and Reviews in Teratology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0521-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0521-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7847-4

  • Online ISBN: 978-1-4613-0521-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics